Publications by authors named "Dieter Cremer"

The local vibrational mode analysis developed by Konkoli and Cremer has been successfully applied to characterize the intrinsic bond strength via local bond stretching force constants in molecular systems. A wealth of new insights into covalent bonding and weak chemical interactions ranging from hydrogen, halogen, pnicogen, and chalcogen to tetrel bonding has been obtained. In this work we extend the local vibrational mode analysis to periodic systems, i.

View Article and Find Full Text PDF

A set of 50 molecules with NF bonds was investigated to determine the factors that influence the strength of a NF bond, with the aim of designing a new class of fluorinating agents. The intrinsic bond strength of the NF bonds was used as bond strength measure, derived from local stretching NF force constants obtained at the CCSD(T)/aug-cc-pVTZ and ωB97XD/aug-cc-pVTZ levels of theory. The investigation showed that the NF bond is a tunable covalent bond, with bond strength orders ranging from 2.

View Article and Find Full Text PDF

Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable.

View Article and Find Full Text PDF

Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode-mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates.

View Article and Find Full Text PDF

A novel approach is presented to assess chemical similarity based the local vibrational mode analysis developed by Konkoli and Cremer. The local mode frequency shifts are introduced as similarity descriptors that are sensitive to any electronic structure change. In this work, 59 different monosubstituted benzenes are compared.

View Article and Find Full Text PDF

A diverse set of 100 chalcogen-bonded complexes comprising neutral, cationic, anionic, divalent, and double bonded chalcogens has been investigated using ωB97X-D/aug-cc-pVTZ to determine geometries, binding energies, electron and energy density distributions, difference density distributions, vibrational frequencies, local stretching force constants, and associated bond strength orders. The accuracy of ωB97X-D was accessed by CCSD(T)/aug-cc-pVTZ calculations of a subset of 12 complexes and by the CCSD(T)/aug-cc-pVTZ //ωB97X-D binding energies of 95 complexes. Most of the weak chalcogen bonds can be rationalized on the basis of electrostatic contributions, but as the bond becomes stronger, covalent contributions can assume a primary role in the strength and geometry of the complexes.

View Article and Find Full Text PDF

The stability of small Au (m = 4-7) clusters is investigated by analyzing their energetic, geometric, vibrational, magnetic, and electron density properties. Gold clusters can be constructed from stable cyclic 3-center-2-electron (3c-2e) Au units (3-rings) with σ-aromaticity. The stabilization requires a flow of negative charge from internal 3-rings with electron-deficient bonding to peripheral 3-ring units with stronger Au-Au bonds.

View Article and Find Full Text PDF

A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σ is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁. The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σ values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.

View Article and Find Full Text PDF
Article Synopsis
  • - The catalytic activity of transition metal complexes can be predicted using the Metal-Ligand Electronic Parameter (MLEP), which focuses on the local stretching force constant of the metal-ligand bond.
  • - Vibrational spectroscopy helps in determining the vibrational mode properties, extracting local vibrational modes from delocalized ones, which are crucial for characterizing bond strength.
  • - MLEP is proposed as an improvement over the Tolman Electronic Parameter (TEP), which has limitations due to large errors from mode-mode coupling and its inability to accurately represent intrinsic M-L bond strength.
View Article and Find Full Text PDF

The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond.

View Article and Find Full Text PDF

A total of 202 halogen-bonded complexes have been studied using a dual-level approach: ωB97XD/aug-cc-pVTZ was used to determine geometries, natural bond order charges, charge transfer, dipole moments, electron and energy density distributions, vibrational frequencies, local stretching force constants, and relative bond strength orders n. The accuracy of these calculations was checked for a subset of complexes at the CCSD(T)/aug-cc-pVTZ level of theory. Apart from this, all binding energies were verified at the CCSD(T) level.

View Article and Find Full Text PDF

36 halogen-bonded complexes YXAR (X: F, Cl, Br; Y: donor group; AR acceptor group) have been investigated at the CCSD(T)/aug-cc-pVTZ level of theory. Binding energies, geometries, NBO charges, charge transfer, dipole moments, electrostatic potential, electron and energy density distributions, difference density distributions, vibrational frequencies, local stretching and bending force constants, and relative bond strength orders n have been calculated and used to order the halogen bonds according to their intrinsic strength. Halogen bonding is found to arise from electrostatic and strong covalent contributions.

View Article and Find Full Text PDF

The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.

View Article and Find Full Text PDF

The reaction mechanism of the cycloaddition of 10 1,3-dipoles with the two dipolarphiles ethene and acetylene is investigated and compared using the Unified Reaction Valley Approach in a new form, which is based on a dual-level strategy, an accurate description of the reaction valley far out into the van der Waals region, and a comparative analysis of the electronic properties of the reaction complex. A detailed one-to-one comparison of 20 different 1,3-dipolar cycloadditions is performed, and unknown mechanistic features are revealed. There are significant differences in the reaction mechanisms for the two dipolarophiles that result from the van der Waals complex formation in the entrance channel of the cycloadditions.

View Article and Find Full Text PDF

Vibrational frequencies can be measured and calculated with high precision. Therefore, they are excellent tools for analyzing the electronic structure of a molecule. In this connection, the properties of the local vibrational modes of a molecule are best suited.

View Article and Find Full Text PDF

β-Hydride eliminations for ethylgold(III) dichloride complexes are identified as reactions with an unusually long prechemical stage corresponding to the conformational preparation of the reaction complex and spanning six phases. The prechemical process is characterized by a geared rotation of the L-Au-L group (L = Cl) driving methyl group rotation and causing a repositioning of the ligands. This requires more than 28 kcal/mol of the total barrier of 34.

View Article and Find Full Text PDF

For the first time, nonclassical hydrogen (H)-bonding involving a B-H···π interaction is described utilizing both quantum chemical predictions and experimental realization. In the gas phase, a B-H···π H-bond is observed in either B2H6···benzene (ΔE = -5.07 kcal/mol) or carborane···benzene (ΔE = -3.

View Article and Find Full Text PDF

The Tolman electronic parameter (TEP) derived from the A1-symmetrical CO stretching frequency of nickel-tricarbonyl complexes L-Ni(CO)3 with varying ligands L is misleading as (i) it is not based on a mode decoupled CO stretching frequency and (ii) a generally applicable and quantitatively correct or at least qualitatively reasonable relationship between the TEP and the metal-ligand bond strength does not exist. This is shown for a set of 181 nickel-tricarbonyl complexes using both experimental and calculated TEP values. Even the use of mode-mode decoupled CO stretching frequencies (L(ocal)TEPs) does not lead to a reliable description of the metal-ligand bond strength.

View Article and Find Full Text PDF

The Diels-Alder reaction between 1,3-butadiene and ethene is investigated from far-out in the entrance channel to the very last step in the exit channel thus passing two bifurcation points and extending the range of the reaction valley studied with URVA (Unified Reaction Valley Approach) by 300% compared to previous studies. For the first time, the pre- and postchemical steps of the reaction are analyzed at the same level of theory as the actual chemical processes utilizing the path curvature and its decomposition into internal coordinate or curvilinear coordinate components. A first smaller charge transfer to the dienophile facilitates the rotation of gauche butadiene into its cis form.

View Article and Find Full Text PDF

The intrinsic bond strength of C2 in its (1)Σg(+) ground state is determined from its stretching force constant utilizing MR-CISD+Q(8,8), MR-AQCC(8,8), and single-determinant coupled cluster calculations with triple and quadruple excitations. By referencing the CC stretching force constant to its local counterparts of ethane, ethylene, and acetylene, an intrinsic bond strength half way between that of a double bond and a triple bond is obtained. Diabatic MR-CISD+Q results do not change this.

View Article and Find Full Text PDF
Article Synopsis
  • The unified reaction valley approach (URVA) has been enhanced by analyzing the direction and curvature of reaction paths without relying on local vibrational modes, reducing sensitivity to path instabilities.
  • It incorporates third-order energy terms for a more accurate local description, extending the analysis into pre- and post-reaction regions typically featuring flat energy landscapes.
  • The method also clarifies configurational and conformational changes in reaction complexes, even for minor energy variations, by leveraging the potential energy surface's topology, with examples including specific chemical reactions like methanol carbonization and the Diels-Alder reaction.
View Article and Find Full Text PDF

The ongoing controversy whether cyclization reactions of conjugated allenes or ketenes follow a pericyclic or a pseudopericyclic mechanism has triggered dozens of investigations, which have led to new valuable synthetic routes. In this work, the mechanism of 10 representative cyclization reactions of hepta-1,2,4,6-tetraenes with different terminal groups is investigated utilizing the unified reaction valley approach that registers all electronic structure changes of the target molecule along the entire reaction pathway. A clear differentiation between a purely pericyclic and a purely pseudopericyclic mechanism is established.

View Article and Find Full Text PDF

A set of 42 molecules with N-F, O-F, N-Cl, P-F, and As-F bonds has been investigated in the search for potential bond anomalies, which lead to reverse bond length-bond strength (BLBS) relationships. The intrinsic strength of each bond investigated has been determined by the local stretching force constant obtained at the CCSD(T)/aug-cc-pVTZ level of theory. N-F or O-F bond anomalies were found for fluoro amine radicals, fluoro amines, and fluoro oxides, respectively.

View Article and Find Full Text PDF

Bond anomalies have been investigated for a set of 53 molecules with either N-F, Ti-P, Cr-H, Pb-C, or Pb-F bonds for which reverse rather than inverse bond length-bond strength relationships have been previously claimed. The intrinsic strength of each bond investigated was determined utilizing the associated local stretching force constant obtained at the CCSD(T)/aug-cc-pVTZ level of theory. For the metal containing molecules, LC-ωPBE calculations with the aug-cc-pVTZ (Cr, Pb) and the 6-31++G(d,p) basis set (Ti) were carried out.

View Article and Find Full Text PDF