Background: Patients with long QT syndrome (LQTS) are at increased risk not only for ventricular arrhythmias but also for atrial pathology including atrial fibrillation (AF). Some patients with "lone" AF carry Na(+)-channel mutations.
Objective: The purpose of this study was to determine the mechanisms underlying atrial pathology in LQTS.
Aims: Clinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). Beta-adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease.
Methods And Results: We studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (DeltaKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice).
Although numerous studies have reported the effects of genetic alterations on murine electrophysiology, the range of normal values for ventricular activation, repolarization, and arrhythmias in mouse hearts is not known. We analyzed right ventricular (RV), left ventricular (LV), and septal activation times, monophasic action potential durations (APD), and right ventricular effective refractory periods during spontaneous rhythm, induced AV nodal block, right ventricular pacing (100-300 ms paced cycle length), and programmed stimulation in 410 beating, Langendorff-perfused, wild-type mouse hearts of CD1, DBAC3H, FVBN, C57/Bl6, and hybrid backgrounds (age 203 +/- 132 days). Action potential duration was longer at longer cycle lengths.
View Article and Find Full Text PDF