Background: Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis.
View Article and Find Full Text PDFFree Radic Biol Med
December 2019
Skeletal muscle disuse results in myofibrillar atrophy and protein degradation, via inflammatory and oxidative stress-mediated NF-kB signaling pathway activation. Nutritional interventions, such as l-glutamine (GLN) supplementation have shown antioxidant properties and cytoprotective effects through the modulation on the 70-kDa heat shock protein (HSP70) expression. However, these GLN-mediated effects on cell signaling pathways and biochemical mechanisms that control the myofibrillar protein content degradation in muscle disuse situations are poorly known yet.
View Article and Find Full Text PDF