Galactosyl-ceramidase (GALC) is a ubiquitous lysosomal enzyme crucial for the correct myelination of the mammalian nervous system during early postnatal development. However, the physiological consequence of GALC deficiency in the adult brain remains unknown. In this study, we found that mice with conditional ablation of GALC activity in post-myelinating oligodendrocytes were lethally sensitized when challenged with chronic experimental allergic encephalomyelitis (EAE), in contrast with the non-lethal dysmyelination observed in Galc-ablated mice without the EAE challenge.
View Article and Find Full Text PDFLoss of muscle mass is a common manifestation of chronic disease. We find the canonical Wnt pathway to be activated in mesenchymal progenitors (MPs) from cancer-induced cachectic mouse muscle. Next, we induce β-catenin transcriptional activity in murine MPs.
View Article and Find Full Text PDFBackground: In a broad variety of species, muscle contraction is controlled at the neuromuscular junction (NMJ), the peripheral synapse composed of a motor nerve terminal, a muscle specialization, and non-myelinating terminal Schwann cells. While peripheral nerve damage leads to successful NMJ reinnervation in animal models, muscle fiber reinnervation in human patients is largely inefficient. Interestingly, some hallmarks of NMJ denervation and early reinnervation in murine species, such as fragmentation and poly-innervation, are also phenotypes of aged NMJs or even of unaltered conditions in other species, including humans.
View Article and Find Full Text PDFLithium chloride has been widely used as a therapeutic mood stabilizer. Although cumulative evidence suggests that lithium plays modulatory effects on postsynaptic receptors, the underlying mechanism by which lithium regulates synaptic transmission has not been fully elucidated. In this work, by using the advantageous neuromuscular synapse, we evaluated the effect of lithium on the stability of postsynaptic nicotinic acetylcholine receptors (nAChRs) in vivo.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
April 2021
The coordinated movement of many organisms relies on efficient nerve-muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches.
View Article and Find Full Text PDFThe maintenance of a high density of the acetylcholine receptor (AChR) is the hallmark of the neuromuscular junction. Muscle-specific anchoring protein (αkap) encoded within the calcium/calmodulin-dependent protein kinase IIα (CAMK2A) gene is essential for the maintenance of AChR clusters both and in cultured muscle cells. The underlying mechanism by which αkap is maintained and regulated remains unknown.
View Article and Find Full Text PDFThe coordinated movement of organisms relies on efficient nerve-muscle communication at the neuromuscular junction. After peripheral nerve injury or neurodegeneration, motor neurons and Schwann cells increase the expression of the p75 pan-neurotrophin receptor. Even though p75 targeting has emerged as a promising therapeutic strategy to delay peripheral neuronal damage progression, the effects of long-term p75 inhibition at the mature neuromuscular junction have not been elucidated.
View Article and Find Full Text PDFAcetylcholine receptor (AChR) clustering on the surface of muscle cells is a hallmark of postsynaptic differentiation at the vertebrate neuromuscular junction (NMJ). Even though the assembly of complex postsynaptic apparatuses is known to rely on both, pre- and postsynaptic signals, the identity of muscle-derived proteins modulating postsynaptic assembly and maintenance is still to be fully elucidated. Efficient gene transfer into muscle cells represents a powerful tool to analyze the contribution of muscle proteins on postsynaptic assembly and maintenance.
View Article and Find Full Text PDF