The optimisation and application of an analytical method based on gas chromatography coupled to quadrupole time-of-flight mass spectrometry (GC-QToF-MS) is proposed for the first time for the characterisation and identification of mastic ( sp.) resin in archaeological samples. The GC-QToF-MS method demonstrated higher sensitivity compared to single quadrupole GC-MS and enabled enhanced structural elucidation power to be exploited, particularly due to the high mass resolution and accuracy, the possibility to use standard and low ionisation energies as well as its tandem MS capabilities.
View Article and Find Full Text PDFThree Japanese woodblock prints from the Edo period (1603-1868) underwent a scientific investigation with the aim of understanding the changes in the colorants used in Japanese printing techniques. A multi-analytical approach was adopted, combining non-invasive techniques, such as fiber optic reflectance spectroscopy (FORS), Raman spectroscopy, multispectral imaging (MSI), and macro X-ray fluorescence (MA-XRF) with minimally invasive surface-enhanced Raman spectroscopy (SERS). The results enabled many of the pigments to be identified and their distribution to be studied, apart from two shades of purple of organic composition.
View Article and Find Full Text PDFWhen the imagination conjures up an image of an Egyptian mummy, it is normally one of a human body wrapped with undyed linen bandages. However, the reality was much more colourful, as shown by the set of red mummy shrouds and textile fragments from Pharaonic Egypt considered in this work. The textiles were subjected to scientific investigation with the main aim of shedding light on the sources of red colour and on the possible reasons for the different levels of colour fading.
View Article and Find Full Text PDFThis work explores the use of multispectral imaging (MSI) techniques applied to the investigation of Late Antique (c. 250-800 AD) textiles found in Egypt. Although the use of these techniques is well-established in the study of polychrome surfaces, they have only been sparingly and often unsystematically applied to the investigation of textiles.
View Article and Find Full Text PDFA scanning electron microscopy (SEM) investigation of pine (Pinus sylvestris) and oak (Quercus sp.) wood samples exposed to various types of natural degradation is presented with the aim of discussing the correct identification of multiple degradation signs in waterlogged wood. This is part of an experiment performed at the archeological site of Biskupin (Poland) to evaluate the dynamics of short-term wood degradation during reburial and the suitability of excavated wood as substrate for the fungal attack.
View Article and Find Full Text PDFAlum-treated wooden artefacts from the Oseberg collection display a great deal of morphological, structural and compositional inhomogeneity. Thus, an in-depth understanding of chemical processes underlying their degradation requires consideration of a variety of local environments. In addition to alum, sources of inorganic compounds include metal parts, corrosion products of which can migrate into the surrounding wood.
View Article and Find Full Text PDFA strategy based on electrospray ionisation (ESI) in negative mode coupled with quadrupole-time of flight (Q-ToF) detection techniques was adopted to characterise some samples of shellac resin. Flow injection analysis (FIA) was used to investigate the distribution of the components of the resin. Eight groups of compounds with increasing masses were detected and assigned to free acids, esters and polyesters with up to eight units.
View Article and Find Full Text PDFWood artefacts undergo complex alteration and degradation during ageing, and gaining information on the chemical composition of wood in archaeological artefacts is fundamental to plan conservation strategies. In this work, an integrated analytical approach based on innovative NMR spectroscopy procedures, gel permeation chromatography and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC-MS) was applied for the first time on archaeological wood from the Oseberg collection (Norway), in order to evaluate the chemical state of preservation of the wood components, without separating them. We adopted ionic liquids (ILs) as non-derivatising solvents, thus obtaining an efficient dissolution of the wood, allowing us to overcome the difficulty of dissolving wood in its native form in conventional molecular solvents.
View Article and Find Full Text PDFA novel analytical approach based on pyrolysis-gas chromatography coupled with mass spectrometry of carbohydrates with in situ silylation using hexamethyldisilazane is presented in this work for the first time. A micro reaction sampler was used to simultaneously achieve the pyrolyis reaction and facilitate the derivatization of pyrolysis products, by enabling the materials to react with the derivatizing agent in a sealed capsule at high temperature and pressure for long periods of time. This drastically increased the complete silylation of the pyrolysis products and the chromatographic resolution, resulting in less complex pyrograms and increased sensitivity toward the most stable compounds.
View Article and Find Full Text PDFEvolved gas analysis-mass spectrometry (EGA-MS) was used for the first time to study archaeological wood, in order to investigate its chemical degradation. The archaeological wood was from an oak pile from a stilt house found in the Neolithic 'La Marmotta' village (Lake Bracciano, Rome, Italy). The sampling was performed from the external to the internal part of the pile, following the annual growth rings in groups of five.
View Article and Find Full Text PDF