π-Electron magnetic compounds on surfaces have emerged as a powerful platform to interrogate spin interactions at the atomic scale, with great potential in spintronics and quantum technologies. A key challenge is organizing these compounds over large length scales, while elucidating their resulting magnetic properties. Herein, we offer a relevant contribution toward this objective, which consists of using on-surface synthesis coupled with coordination chemistry to promote the self-assembly of π-electron magnetic porphyrin species.
View Article and Find Full Text PDFMagnetism in two dimensions is traditionally considered an exotic phase mediated by spin fluctuations, but far from collinearly ordered in the ground state. Recently, 2D magnetic states have been discovered in layered van der Waals compounds. Their robust and tunable magnetic state by material composition, combined with reduced dimensionality, foresee a strong potential as a key element in magnetic devices.
View Article and Find Full Text PDFThe incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
The character of the electronic structure of acenes has been the subject of longstanding discussion. However, convincing experimental evidence of their open-shell character has so far been missing. Here, we present the on-surface synthesis of tridecacene molecules by thermal annealing of octahydrotridecacene on a Au(111) surface.
View Article and Find Full Text PDFThe synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111).
View Article and Find Full Text PDFJ Phys Condens Matter
May 2022
Density functional theory (DFT) is usually formulated in terms of the electron density as a function of position(). Here we discuss an alternative formulation of DFT in terms of the orbital occupation numbers {} associated with a local-orbital orthonormal basis set {}. First, we discuss how the building blocks of DFT, namely the Hohenberg-Kohn theorems, the Levy-Lieb approach and the Kohn-Sham method, can be adapted for a description in terms of {}.
View Article and Find Full Text PDFIn the conventional DFT + U approach, the mean field solution of the Hubbard Hamiltonian associated with theor() electrons of a transition metal atom is used to define the DFT + U potential acting on the-electrons. In this work, we go beyond that mean field solution by analyzing the correlation energy and potential for a multi-level atom described by a Kanamori Hamiltonian connected to different channels representing the environment. As a first step, we analyze the many-body solution of our model, using a local-orbital density functional formalism that takes as independent variables the orbital occupancies,, of the atomic orbitals; accordingly, we present the corresponding density functional solution describing the correlation energy and potential as a function of.
View Article and Find Full Text PDFIn hydrogen-bonded systems, nuclear quantum effects such as zero-point motion and tunneling can significantly affect their material properties through underlying physical and chemical processes. Presently, direct observation of the influence of nuclear quantum effects on the strength of hydrogen bonds with resulting structural and electronic implications remains elusive, leaving opportunities for deeper understanding to harness their fascinating properties. We studied hydrogen-bonded one-dimensional quinonediimine molecular networks which may adopt two isomeric electronic configurations via proton transfer.
View Article and Find Full Text PDFOn-surface synthesis has revealed remarkable potential in the fabrication of atomically precise nanographenes. However, surface-assisted synthesis often involves multiple-step cascade reactions with competing pathways, leading to a limited yield of target nanographene products. Here, we devise a strategy for the ultrahigh-yield synthesis of circumcoronene molecules on Cu(111) via surface-assisted intramolecular dehydrogenation of the rationally designed precursor, followed by methyl radical-radical coupling and aromatization.
View Article and Find Full Text PDFA double proton transfer reaction in a guanine-cytosine (GC) base pair has been proposed as a possible mechanism for rare tautomer (G*C*) formation and thus a source of spontaneous mutations. We analyze this system with calculations based on extensive Quantum Mechanics/Molecular Mechanics simulations to properly consider the influence of the DNA biomolecular environment. We find that, although the G*C* rare tautomer is metastable in the gas phase, it is completely unstable in the conditions found in cells.
View Article and Find Full Text PDF