Omega hydroxycarboxylic acids (ω-HAs) possess two functional groups, a hydroxyl group and a carboxyl group, and are essential precursors for the production of biodegradable polyester polymers. In this work, an Acidovorax mutant was investigated as a whole-cell biocatalyst for the conversion of cycloalkanes to their respective ω-hydroxycarboxylic acids. This Acidovorax sp.
View Article and Find Full Text PDFChemical synthesis of lactones from cycloalkanes is a multi-step process challenged by limitations in reaction efficiency (conversion and yield), atom economy (by-products) and environmental performance. A heterologous pathway comprising novel enzymes with compatible kinetics was designed in Pseudomonas taiwanensis VLB120 enabling in-vivo cascade for synthesizing lactones from cycloalkanes. The respective pathway included cytochrome P450 monooxygenase (CHX), cyclohexanol dehydrogenase (CDH), and cyclohexanone monooxygenase (CHXON) from Acidovorax sp.
View Article and Find Full Text PDFThe removal of cyclohexane from gaseous emissions was studied using a biotrickling filter packed with polyurethane foam. Acivodorax sp. CHX100 was chosen as inoculum due to its ability to use cyclohexane as carbon source.
View Article and Find Full Text PDFThe applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp.
View Article and Find Full Text PDFAcidovorax sp. CHX100 has a remarkable ability for growth on short cycloalkanes (C5-C8) as a sole source of carbon and energy under aerobic conditions via an uncharacterized mechanism. Transposon mutagenesis of Acidovorax sp.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2014
Two strains capable of degrading cyclohexane were isolated from the soil and sludge of the wastewater treatment plant of the University of Stuttgart and a biotrickling filter system. The strains were classified as gram negative and identified as Acidovorax sp. CHX100 and Chelatococcus sp.
View Article and Find Full Text PDF