Publications by authors named "Diego S Domingues"

Background: Polypharmacy is a common practice in schizophrenia. Consequently, therapeutic drug monitoring is usually adopted to maintain the concentrations of the drugs in the plasma within a targeted therapeutic range, to maximize therapeutic efficiency and to diminish adverse side effects.

Methodology: This study reports on a column switching UHPLC-MS/MS method to determine psychotropic drugs in plasma samples simultaneously.

View Article and Find Full Text PDF

This paper focuses on the development of a novel miniaturized molecularly imprinted solid-phase extraction (MISPE) and ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to determine venlafaxine (VEN), O-desmethylvenlafaxine (ODV), and N-desmethylvenlafaxine (NDV) in plasma samples. The molecularly imprinted polymer (MIP) was prepared by the precipitation polymerization approach; VEN, metacrylic acid, ethylene glycol dimethacrylate, 2,2-azobisisobutyronitrile, and toluene were used as template, monomer, crosslinker, initiator, and porogen solvent, respectively. MIP and of the non-imprinted control polymer (NIP) sorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy.

View Article and Find Full Text PDF

This work describes the development of a simple, sensitive and selective method based on high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS) to determine antipsychotics (olanzapine, quetiapine, clozapine, haloperidol and chlorpromazine) along with antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine and fluoxetine), anticonvulsants (carbamazepine and lamotrigine) and anxiolytics (diazepam and clonazepam) in plasma samples obtained from schizophrenic patients. The samples were prepared by protein precipitation. The target drugs were separated on an XSelect SCH C18 column (100 mm × 2.

View Article and Find Full Text PDF

The present study (1) reports on the synthesis of two hybrid silica monoliths functionalized with aminopropyl or cyanopropyl groups by the sol-gel process; (2) evaluates these monoliths as selective stationary phase for microextraction by packed sorbent (MEPS) to determine drugs in plasma samples via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reactions monitoring (MRM) mode; and (3) discusses important factors related to the optimization of MEPS efficiency as well as the carryover effect. The prepared hybrid silica monoliths consisted of a uniform, porous, and continuous silica monolithic network. The structure of the aminopropyl hybrid silica monolith was more compact than the structure of the cyanopropyl hybrid silica monolith.

View Article and Find Full Text PDF

This study reports on the development of a rapid, selective, and sensitive column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze sixteen drugs (antidepressants, anticonvulsants, anxiolytics, and antipsychotics) in plasma samples from schizophrenic patients. The developed organic-inorganic hybrid monolithic column with cyanopropyl groups was used for the first dimension of the column-switching arrangement. This arrangement enabled online pre-concentration of the drugs (monolithic column) and their subsequent analytical separation on an XSelect SCH C18 column.

View Article and Find Full Text PDF

A sensitive, reproducible, and rapid method was developed for the simultaneous determination of underivatized amino acids (aspartate, serine, glycine, alanine, methionine, leucine, tyrosine, and tryptophan) and neurotransmitters (glutamate and γ-aminobutyric acid) in plasma samples using hydrophilic interaction liquid chromatography coupled to triple quadrupole tandem mass spectrometry. The plasma concentrations of amino acids and neurotransmitters obtained from 35 schizophrenic patients in treatment with clozapine (27 patients) and olanzapine (eight patients) were compared with those obtained from 38 healthy volunteers to monitor the effectiveness of treatment. The chromatographic conditions separated ten target compounds within 3 min.

View Article and Find Full Text PDF
Article Synopsis
  • Coffee is one of the world's most popular beverages, leading to concerns about the detection of impurities and adulterants, which are often hard to see in roasted and ground coffee.
  • In Brazil, common additions to coffee include various roasted materials like husks, sticks, and even acai palm seeds.
  • The study compared two chromatographic methods for analyzing carbohydrates in coffee, using principal component analysis to assess their effectiveness in detecting these adulterations.
View Article and Find Full Text PDF