Combinatorial properties such as long-circulation and site- and cell-specific engagement need to be built into the design of advanced drug delivery systems to maximize drug payload efficacy. This work introduces a four-stranded oligonucleotide Holliday Junction (HJ) motif bearing functional moieties covalently conjugated to recombinant human albumin (rHA) to give a "plug-and-play" rHA-HJ multifunctional biomolecular assembly with extended circulation. Electrophoretic gel-shift assays show successful functionalization and purity of the individual high-performance liquid chromatography-purified modules as well as efficient assembly of the rHA-HJ construct.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
September 2020
Introduction: A poor pharmacokinetic profile due to inadequate distribution and rapid renal clearance limits site-specific target engagement and drug efficacy. The inherent properties of human serum albumin for broad tissue distribution, prolonged circulation, and ligand transport have been engineered into albumin-based drug designs to modulate the pharmacokinetics to increase efficacy and reduce the frequency of dose.
Areas Covered: This review highlights albumin structural features, ligand binding, and molecular interactions key to albumin-drug designs and an overview of the repertoire of albumin-drugs and approaches, with focus on pharmacokinetics of marketed products and clinical trials.