Despite the recognized importance of flowing waters in global greenhouse gas (GHG) budgets, riverine GHG models remain oversimplified, consequently restraining the development of effective prediction for riverine GHG emissions feedbacks. Here we elucidate the state of the art of riverine GHG models by investigating 148 models from 122 papers published from 2010 to 2021. Our findings indicate that riverine GHG models have been mostly data-driven models (83%), while mechanistic and hybrid models were uncommonly applied (12% and 5%, respectively).
View Article and Find Full Text PDFEstuaries have been recognized as one of the major sources of greenhouse gases (GHGs) in aquatic systems; yet we still lack insights into the impact of both anthropogenic and natural factors on the dynamics of GHG emissions. Here, we assessed the spatiotemporal dynamics and underlying drivers of the GHG emissions from the Scheldt Estuary with a focus on the effects of salinity gradient, water pollution, and land use types, together with their interaction. Overall, we found a negative impact of salinity on carbon dioxide (CO) and nitrous oxide (NO) emissions which can be due to the decrease of both salinity and water quality when moving upstream.
View Article and Find Full Text PDF