Publications by authors named "Diego Noguera-Marin"

The motion of electrically charged particles under crowding conditions and subjected to evaporation-driven capillary flow might be ruled by collective diffusion. The concentration gradient developed inside an evaporating drop of colloidal suspension may reduce by diffusion the number of particles transported toward the contact line by convection. Unlike self-diffusion coefficient, the cooperative diffusion coefficient of interacting particles becomes more pronounced in crowded environments.

View Article and Find Full Text PDF

Segregation of particles during capillary/convective self-assembly is interesting for self-stratification in colloidal deposits. In evaporating drops containing colloidal particles, the wettability properties of substrate and the sedimentation of particles can affect their accumulation at contact lines. In this work we studied the size segregation and discrimination of charged particles with different densities.

View Article and Find Full Text PDF

Complete understanding of colloidal assembly is still a goal to be reached. In convective assembly deposition, the concentration gradients developed in evaporating drops or reservoirs are usually significant. However, collective diffusion of charge-stabilized particles has been barely explored.

View Article and Find Full Text PDF

Better control of colloidal assembly by convective deposition is particularly helpful in particle templating. However, knowledge of the different factors that can alter colloidal patterning mechanisms is still insufficient. Deposit morphology is strongly ruled by contact line dynamics, but the wettability properties of the substrate can alter it drastically.

View Article and Find Full Text PDF