Purpose: Air-vented ionization chambers have been the secondary standard for radiation dosimetry since the origins of radiation metrology. However, the feasibility of their use in ultra-high dose rate pulsed beams has been a matter of discussion, as large losses are caused by ion recombinations and no suitable theoretical model is available for their correction. The theories developed by Boag and his contemporaries since the 1950s, which have provided the standard ion recombination correction factor in clinical dosimetry, do not provide an accurate description when used under the limit conditions of ultra-high dose rates (UHDRs).
View Article and Find Full Text PDFPurpose: To evaluate the response of the four smallest active volume thimble type ionization chambers commercially available (IBA-dosimetry RAZOR Nano Chamber, Standard Imaging Exradin A16, IBA-dosimetry CC01 and PTW T31022) when measuring SRS cone collimated Flattening Filter Free (FFF) fields.
Methods: We employed Monte Carlo simulation for calculating correction factors as defined in IAEA TRS-483. Monte Carlo simulation beam model and ion chamber geometry definitions were supported by an extensive set of measurements.
Background: Conventional air ionization chambers (ICs) exhibit ion recombination correction factors that deviate substantially from unity when irradiated with dose per pulse magnitudes higher than those used in conventional radiotherapy. This fact makes these devices unsuitable for the dosimetric characterization of beams in ultra-high dose per pulse as used for FLASH radiotherapy.
Purpose: We present the design, development, and characterization of an ultra-thin parallel plate IC that can be used in ultra-high dose rate (UHDR) deliveries with minimal recombination.
In this work we have created and commissioned a Monte Carlo model of 6FFF Varian TrueBeam linear accelerator using BEAMnrc. For this purpose we have experimentally measured the focal spot size and shape of three Varian TrueBeam treatment units in 6FFF modality with a slit collimator and several depth dose and lateral beam profiles in a water phantom. The Monte Carlo model of a 6FFF TrueBeam machine was implemented with a primary electron source commissioned as a 2D Gaussian with Full Width Half Maximum selected by comparison of simulated and measured narrow beam profiles.
View Article and Find Full Text PDFPurpose: The aim of this study was to present a novel 2041 liquid-filled ionization chamber array for high-resolution verification of radiotherapy treatments.
Materials And Methods: The prototype has 2041 ionization chambers of 2.5 × 2.
Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R.
View Article and Find Full Text PDFIn this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels.
View Article and Find Full Text PDFThe eIMRT platform is a remote distributed computing tool that provides users with Internet access to three different services: Monte Carlo optimization of treatment plans, CRT & IMRT treatment optimization, and a database of relevant radiation treatments/clinical cases. These services are accessible through a user-friendly and platform independent web page. Its flexible and scalable design focuses on providing the final users with services rather than a collection of software pieces.
View Article and Find Full Text PDFIn order to obtain realistic and reliable Monte Carlo simulations of medical linac photon beams, an accurate determination of the parameters that define the primary electron beam that hits the target is a fundamental step. In this work we propose a new methodology to commission photon beams in Monte Carlo simulations that ensures the reproducibility of a wide range of clinically useful fields. For such purpose accelerated Monte Carlo simulations of 2 x 2, 10 x 10, and 20 x 20 cm2 fields at SSD = 100 cm are carried out for several combinations of the primary electron beam mean energy and radial FWHM.
View Article and Find Full Text PDF