Objectives: Tideglusib (Tx) is known for its osteogenic potential, yet its effects on the interplay between osteoblasts and M1 macrophages remain underexplored. This in vitro study aimed to isolate and evaluate both the individual and combined roles of M1 macrophages and osteoblasts in macrophage differentiation and osteoblast function, specifically focusing on how these interactions influence protein expression of osteogenesis and osteoclastogenesis in the presence or absence of Tx.
Methods: Osteoblast and macrophage cells were co-cultured in direct contact for 24 and 48 h, with or without the presence of Tx.
Regenerative Rehabilitation represents a multifaceted approach that merges mechanobiology with therapeutic intervention to harness the body's intrinsic tissue repair and regeneration capacity. This review delves into the intricate interplay between mechanical loading and cellular responses in the context of musculoskeletal tissue healing. It emphasizes the importance of understanding the phases involved in translating mechanical forces into biochemical responses at the cellular level.
View Article and Find Full Text PDFInvestigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca influx and pro-inflammatory cytokine secretion.
View Article and Find Full Text PDFThis study aimed to understand extracellular mechanical stimuli's effect on prostate cancer cells' metastatic progression within a three-dimensional (3D) bone-like microenvironment. In this study, a mechanical loading platform, EQUicycler, has been employed to create physiologically relevant static and cyclic mechanical stimuli to a prostate cancer cell (PC-3)-embedded 3D tissue matrix. Three mechanical stimuli conditions were applied: control (no loading), cyclic (1% strain at 1 Hz), and static mechanical stimuli (1% strain).
View Article and Find Full Text PDFBackground: Disseminated tumor cells (DTCs) can enter a dormant state and cause no symptoms in cancer patients. On the other hand, the dormant DTCs can reactivate and cause metastases progression and lethal relapses. In prostate cancer (PCa), relapse can happen after curative treatments such as primary tumor removal.
View Article and Find Full Text PDFMechano-rehabilitation, also known as mechanotherapy, represents the forefront of noninvasive treatment for musculoskeletal (MSK) tissue disorders, encompassing conditions affecting tendons, cartilage, ligaments, and muscles. Recent emphasis has underscored the significance of macrophage presence in the healing of MSK tissues. However, a considerable gap still exists in comprehending how mechanical strains associated with mechanotherapy impact both the naïve and pro-inflammatory macrophage phenotypes within the three-dimensional (3D) tissue matrix, as well as whether the shift in macrophage phenotype is contingent on the mechanical strains inherent to mechanotherapy.
View Article and Find Full Text PDFIn periodontitis, the bone remodeling process is disrupted by the prevalent involvement of bacteria-induced proinflammatory macrophage cells and their interaction with osteoblast cells residing within the infected bone tissue. The complex interaction between the cells needs to be deciphered to understand the dominant player in tipping the balance from osteogenesis to osteoclastogenesis. Yet, only a few studies have examined the crosstalk interaction between osteoblasts and macrophages using biomimetic three-dimensional (3D) tissue-like matrices.
View Article and Find Full Text PDFLower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells.
View Article and Find Full Text PDFThe spatiotemporal interaction and constant iterative feedback between fibroblasts, extracellular matrix, and environmental cues are central for investigating the fibroblast-induced musculoskeletal tissue regeneration and fibroblast-to-myofibroblast transition (FMT). In this study, we created a fibroblast-laden 3D tissue analogue to study (1) how mechanical loading exerted on three-dimensional (3D) tissues affected the residing fibroblast phenotype and (2) to identify the ideal mechanical strain amplitude for promoting tissue regeneration without initiating myofibroblast differentiation. We applied uniaxial tensile strain (0, 4, 8, and 12%) to the cell-laden 3D tissue analogues to understand the interrelation between the degree of applied mechanical loading amplitudes and FMT.
View Article and Find Full Text PDFThe rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions.
View Article and Find Full Text PDF