Publications by authors named "Diego J Laderach"

Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results.

View Article and Find Full Text PDF

Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is a major health problem worldwide. Taxol derivatives-based chemotherapies or immunotherapies are usually proposed depending on the symptomatic status of the patient. In the case of immunotherapy, tumors develop robust immune escape mechanisms that abolish any protective response, and to date why prostate cancer is one of the most resistant diseases remains unresolved.

View Article and Find Full Text PDF

Galectins are small proteins with pleiotropic functions, which depend on both their lectin (glycan recognition) and non-lectin (recognition of other biomolecules besides glycans) interactions. Currently, 15 members of this family have been described in mammals, each with its structural and ligand recognition particularities. The galectin/ligand interaction translates into a plethora of biological functions that are particular for each cell/tissue type.

View Article and Find Full Text PDF

Two decades ago, Galectin-8 was described as a prostate carcinoma biomarker since it is only expressed in the neoplastic prostate, but not in the healthy tissue. To date, no biological function has been attributed to Galectin-8 that could explain this differential expression. In this study we silenced Galectin-8 in two human prostate cancer cell lines, PC3 and IGR-CaP1, and designed a pre-clinical experimental model that allows monitoring the pathology from its early steps to the long-term metastatic stages.

View Article and Find Full Text PDF

Conditioning strategies constitute a relatively unexplored and exciting opportunity to shape tumor fate by targeting the tumor microenvironment. In this study, we assessed how hemin, a pharmacologic inducer of heme oxygenase-1 (HO-1), has an impact on prostate cancer development in an conditioning model. The stroma of C57BL/6 mice was conditioned by subcutaneous administration of hemin prior to TRAMP-C1 tumor challenge.

View Article and Find Full Text PDF

Galectin-1 (Gal1), a β-galactoside-binding protein abundantly expressed in tumor microenvironments, is associated with the development of metastasis in hepatocellular carcinomas (HCC). However, the precise roles of Gal1 in HCC cell invasiveness and dissemination are uncertain. Here, we investigated whether Gal1 mediate epithelial-mesenchymal transition (EMT) in HCC cells, a key process during cancer progression.

View Article and Find Full Text PDF

Formation of an aberrant and heterogeneous vascular network is a key pathological event in the multistep process of tumor growth and metastasis. Pro-angiogenic factors are synthesized and released from tumor, stromal, endothelial, and myeloid cells in response to hypoxic and immunosuppressive microenvironments which are commonly found during cancer progression. Emerging data indicate key roles for galectins, particularly galectin-1, -3, -8, and -9 in the regulation of angiogenesis in different pathophysiologic settings.

View Article and Find Full Text PDF

During the past decade, a better understanding of the cellular and molecular mechanisms underlying tumor immunity has provided the appropriate framework for the development of therapeutic strategies for cancer immunotherapy. Under this complex scenario, galectins have emerged as promising molecular targets for cancer therapy responsible of creating immunosuppressive microenvironments at sites of tumor growth and metastasis. Galectins, expressed in tumor, stromal, and endothelial cells, contribute to thwart the development of immune responses by favoring the expansion of T regulatory cells and contributing to their immunosuppressive activity, driving the differentiation of tolerogenic dendritic cells, limiting T cell viability, and maintaining T cell anergy.

View Article and Find Full Text PDF

Prostate cancer is the second most common cause of cancer and the sixth leading cause of cancer death among men worldwide. While localized prostate cancer can be cured, advanced and metastatic prostate cancer remains a significant therapeutic challenge. Malignant transformation is associated with important modifications of the cellular glycosylation profile, and it is postulated that these changes have a considerable relevance for tumor biology.

View Article and Find Full Text PDF

A better understanding of multimolecular interactions involved in tumor dissemination is required to identify new effective therapies for advanced prostate cancer (PCa). Several groups investigated protein-glycan interactions as critical factors for crosstalk between prostate tumors and their microenvironment. This review both discusses whether the "galectin-signature" might serve as a reliable biomarker for the identification of patients with high risk of metastasis and assesses the galectin-glycan lattices as potential novel targets for anticancer therapies.

View Article and Find Full Text PDF

Galectins, a family of glycan-binding proteins, can control tumor progression by promoting transformation, angiogenesis and immune escape. We identified a dynamically regulated 'galectin signature', which delineates the progression of prostate cancer, highlighting galectin-1 as an attractive target for anti-angiogenic therapy in advanced stages of the disease.

View Article and Find Full Text PDF

Galectins, a family of glycan-binding proteins, influence tumor progression by modulating interactions between tumor, endothelial, stromal, and immune cells. Despite considerable progress in identifying the roles of individual galectins in tumor biology, an integrated portrait of the galectin network in different tumor microenvironments is still missing. We undertook this study to analyze the "galectin signature" of the human prostate cancer microenvironment with the overarching goal of selecting novel-molecular targets for prognostic and therapeutic purposes.

View Article and Find Full Text PDF

Galectins are a family of evolutionarily conserved animal lectins with pleiotropic functions and widespread distribution. Fifteen members have been identified in a wide variety of cells and tissues. Through recognition of cell surface glycoproteins and glycolipids, these endogenous lectins can trigger a cascade of intracellular signaling pathways capable of modulating cell differentiation, proliferation, survival, and migration.

View Article and Find Full Text PDF