We report the controlled synthesis of ultra-high molecular weight (UHMW) polymers ( ≥ 10 g/mol) via continuous flow in a tubular reactor. At high monomer conversion, UHMW polymers in homogeneous batch polymerization exhibit high viscosities that pose challenges for employing continuous flow reactors. However, under heterogeneous inverse miniemulsion (IME) conditions, UHMW polymers can be produced within the dispersed phase, while the viscosity of the heterogeneous mixture remains approximately the same as the viscosity of the continuous phase.
View Article and Find Full Text PDFTo prospectively determine whether brain tumors will respond to immune checkpoint inhibitors (ICIs), we developed a novel mRNA vaccine as a viral mimic to elucidate cytokine release from brain cancer cells in vitro. Our results indicate that cytokine signatures following mRNA challenge differ substantially from ICI responsive versus non-responsive murine tumors. These findings allow for creation of a diagnostic assay to quickly assess brain tumor immunogenicity, allowing for informed treatment with ICI or lack thereof in poorly immunogenic settings.
View Article and Find Full Text PDFExisting 3D cell models and technologies have offered tools to elevate cell culture to a more physiologically relevant dimension. One mechanism to maintain cells cultured in 3D is by means of perfusion. However, existing perfusion technologies for cell culture require complex electronic components, intricate tubing networks, or specific laboratory protocols for each application.
View Article and Find Full Text PDF