Publications by authors named "Diego H Milone"

Article Synopsis
  • This study presents gGN, an unsupervised neural network designed to learn node representations in knowledge graphs as Gaussian distributions using a low-rank approximation for the covariance matrices.
  • gGN maintains effective structural feature modeling and scalability to large graphs by incorporating a semantic-based loss function.
  • Experimental results show that gGN outperforms existing methods, particularly in gene characterization tasks, and is available for public use at a specified GitHub link.
View Article and Find Full Text PDF

Identifying meaningful patterns in data is crucial for understanding complex biological processes, particularly in transcriptomics, where genes with correlated expression often share functions or contribute to disease mechanisms. Traditional correlation coefficients, which primarily capture linear relationships, may overlook important nonlinear patterns. We introduce the clustermatch correlation coefficient (CCC), a not-only-linear coefficient that utilizes clustering to efficiently detect both linear and nonlinear associations.

View Article and Find Full Text PDF

Motor imagery-based Brain-Computer Interfaces (MI-BCIs) have gained a lot of attention due to their potential usability in neurorehabilitation and neuroprosthetics. However, the accurate recognition of MI patterns in electroencephalography signals (EEG) is hindered by several data-related limitations, which restrict the practical utilization of these systems. Moreover, leveraging deep learning (DL) models for MI decoding is challenged by the difficulty of accessing user-specific MI-EEG data on large scales.

View Article and Find Full Text PDF

Purpose: This work aims to assess standard evaluation practices used by the research community for evaluating medical imaging classifiers, with a specific focus on the implications of class imbalance. The analysis is performed on chest X-rays as a case study and encompasses a comprehensive model performance definition, considering both discriminative capabilities and model calibration.

Materials And Methods: We conduct a concise literature review to examine prevailing scientific practices used when evaluating X-ray classifiers.

View Article and Find Full Text PDF

Motivation: Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning.

View Article and Find Full Text PDF

The development of successful artificial intelligence models for chest X-ray analysis relies on large, diverse datasets with high-quality annotations. While several databases of chest X-ray images have been released, most include disease diagnosis labels but lack detailed pixel-level anatomical segmentation labels. To address this gap, we introduce an extensive chest X-ray multi-center segmentation dataset with uniform and fine-grain anatomical annotations for images coming from five well-known publicly available databases: ChestX-ray8, CheXpert, MIMIC-CXR-JPG, Padchest, and VinDr-CXR, resulting in 657,566 segmentation masks.

View Article and Find Full Text PDF

In UniProtKB, up to date, there are more than 251 million proteins deposited. However, only 0.25% have been annotated with one of the more than 15000 possible Pfam family domains.

View Article and Find Full Text PDF

The automatic annotation of the protein universe is still an unresolved challenge. Today, there are 229,149,489 entries in the UniProtKB database, but only 0.25% of them have been functionally annotated.

View Article and Find Full Text PDF

Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap.

View Article and Find Full Text PDF

Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction.

View Article and Find Full Text PDF

Motivation: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO) terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the exponential growth of data generated by high-throughput sequencing methods. Hence, researchers need reliable computational systems to help fill the gap with automatic function prediction.

View Article and Find Full Text PDF

The computational methods for the prediction of gene function annotations aim to automatically find associations between a gene and a set of Gene Ontology (GO) terms describing its functions. Since the hand-made curation process of novel annotations and the corresponding wet experiments validations are very time-consuming and costly procedures, there is a need for computational tools that can reliably predict likely annotations and boost the discovery of new gene functions. This work proposes a novel method for predicting annotations based on the inference of GO similarities from expression similarities.

View Article and Find Full Text PDF

The gene ontology (GO) provides a hierarchical structure with a controlled vocabulary composed of terms describing functions and localization of gene products. Recent works propose vector representations, also known as embeddings, of GO terms that capture meaningful information about them. Significant performance improvements have been observed when these representations are used on diverse downstream tasks, such as the measurement of semantic similarity between GO terms and functional similarity between proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning systems affect our everyday lives, so it's important that they make fair and unbiased decisions.
  • The field of fairness in machine learning is growing to understand how these systems can show biases from the data they're trained on and our society.
  • The authors share ideas on how to improve these systems by looking at the data used, how the models are built, and ensuring a diverse team of developers.
View Article and Find Full Text PDF

Motivation: MicroRNAs (miRNAs) are small RNA sequences with key roles in the regulation of gene expression at post-transcriptional level in different species. Accurate prediction of novel miRNAs is needed due to their importance in many biological processes and their associations with complicated diseases in humans. Many machine learning approaches were proposed in the last decade for this purpose, but requiring handcrafted features extraction to identify possible de novo miRNAs.

View Article and Find Full Text PDF

Objective: This paper tackles the cross-sessions variability of electroencephalography-based brain-computer interfaces (BCIs) in order to avoid the lengthy recalibration step of the decoding method before every use.

Methods: We develop a new approach of domain adaptation based on optimal transport to tackle brain signal variability between sessions of motor imagery BCIs. We propose a backward method where, unlike the original formulation, the data from a new session are transported to a calibration session, and thereby avoiding model retraining.

View Article and Find Full Text PDF

In land plant mitochondria, C-to-U RNA editing converts cytidines into uridines at highly specific RNA positions called editing sites. This editing step is essential for the correct functioning of mitochondrial proteins. When using sequence homology information, edited positions can be computationally predicted with high precision.

View Article and Find Full Text PDF

Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium.

View Article and Find Full Text PDF

Motivation: The genome-wide discovery of microRNAs (miRNAs) involves identifying sequences having the highest chance of being a novel miRNA precursor (pre-miRNA), within all the possible sequences in a complete genome. The known pre-miRNAs are usually just a few in comparison to the millions of candidates that have to be analyzed. This is of particular interest in non-model species and recently sequenced genomes, where the challenge is to find potential pre-miRNAs only from the sequenced genome.

View Article and Find Full Text PDF

Motivation: The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has recently emerged as the responsible for the pandemic outbreak of the coronavirus disease 2019. This virus is closely related to coronaviruses infecting bats and Malayan pangolins, species suspected to be an intermediate host in the passage to humans. Several genomic mutations affecting viral proteins have been identified, contributing to the understanding of the recent animal-to-human transmission.

View Article and Find Full Text PDF

Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making great efforts in developing more accurate algorithms to assist medical doctors in the difficult task of disease diagnosis.

View Article and Find Full Text PDF

This dataset is composed of correlated audio recordings and labels of ingestive jaw movements performed during grazing by dairy cattle. Using a wireless microphone, we recorded sounds of three Holstein dairy cows grazing short and tall alfalfa and short and tall fescue. Two experts in grazing behavior identified and labeled the start, end, and type of each jaw movement: bite, chew, and chew-bite (compound movement).

View Article and Find Full Text PDF

Deformable image registration is a fundamental problem in the field of medical image analysis. During the last years, we have witnessed the advent of deep learning-based image registration methods which achieve state-of-the-art performance, and drastically reduce the required computational time. However, little work has been done regarding how can we encourage our models to produce not only accurate, but also anatomically plausible results, which is still an open question in the field.

View Article and Find Full Text PDF

Motivation: The discovery of microRNA (miRNA) in the last decade has certainly changed the understanding of gene regulation in the cell. Although a large number of algorithms with different features have been proposed, they still predict an impractical amount of false positives. Most of the proposed features are based on the structure of precursors of the miRNA only, not considering the important and relevant information contained in the mature miRNA.

View Article and Find Full Text PDF

In the postgenome era, many problems in bioinformatics have arisen due to the generation of large amounts of imbalanced data. In particular, the computational classification of precursor microRNA (pre-miRNA) involves a high imbalance in the classes. For this task, a classifier is trained to identify RNA sequences having the highest chance of being miRNA precursors.

View Article and Find Full Text PDF