Evidence implicating p38γ and p38δ (p38γ/p38δ) in inflammation are mainly based on experiments using -deficient (p38γ/δKO) mice, which show low levels of TPL2, the kinase upstream of MKK1-ERK1/2 in myeloid cells. This could obscure p38γ/p38δ roles, since TPL2 is essential for regulating inflammation. Here, we generated a / (p38γ/δKIKO) mouse, expressing kinase-inactive p38γ and lacking p38δ.
View Article and Find Full Text PDFMitogen- and Stress-activated Kinase (MSK) 1 is a nuclear protein, activated by p38α Mitogen-Activated Kinase (MAPK) and extracellular signal-regulated kinase (ERK1/2), that modulate the production of certain cytokines in macrophages. Using knockout cells and specific kinase inhibitors, we show that, besides p38α and ERK1/2, another p38MAPK, p38δ, mediates MSK phosphorylation and activation, in LPS-stimulated macrophages. Additionally, recombinant MSK1 was phosphorylated and activated by recombinant p38δ, to the same extent than by p38α, in experiments.
View Article and Find Full Text PDFp38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ) cells and tissues without affecting messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels.
View Article and Find Full Text PDFFragment-based drug discovery (FBDD) is a popular method in academia and the pharmaceutical industry for the discovery of early lead candidates. Despite its wide-spread use, the approach still suffers from laborious screening workflows and a limited diversity in the fragments applied. Presented here is the design, synthesis, and biological evaluation of the first fragment library specifically tailored to tackle both these challenges.
View Article and Find Full Text PDFis a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ.
View Article and Find Full Text PDF