Psychiatric disorders are influenced by genetic and environmental factors. However, their study is hindered by limitations on precisely characterizing human behavior. New technologies such as wearable sensors show promise in surmounting these limitations in that they measure heterogeneous behavior in a quantitative and unbiased fashion.
View Article and Find Full Text PDFSingle-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.
View Article and Find Full Text PDFIntroduction: Traditional brain imaging genetics studies have primarily focused on how genetic factors influence the volume of specific brain regions, often neglecting the overall complexity of brain architecture and its genetic underpinnings.
Methods: This study analyzed data from participants across the Alzheimer's disease (AD) from the ALFA and ADNI studies. We exploited compositional data analysis to examine relative brain volumetric variations that (i) differentiate cognitively unimpaired (CU) individuals, defined as amyloid-negative (A-) based on CSF profiling, from those at different AD stages, and (ii) associated with increased genetic susceptibility to AD, assessed using polygenic risk scores.
The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets.
View Article and Find Full Text PDFImaging genetic studies aim to test how genetic information influences brain structure and function by combining neuroimaging-based brain features and genetic data from the same individual. Most studies focus on individual correlation and association tests between genetic variants and a single measurement of the brain. Despite the great success of univariate approaches, given the capacity of neuroimaging methods to provide a multiplicity of cerebral phenotypes, the development and application of multivariate methods become crucial.
View Article and Find Full Text PDFAlternative splicing (AS) is a fundamental step in eukaryotic mRNA biogenesis. Here, we develop an efficient and reproducible pipeline for the discovery of genetic variants that affect AS (splicing QTLs, sQTLs). We use it to analyze the GTEx dataset, generating a comprehensive catalog of sQTLs in the human genome.
View Article and Find Full Text PDFThe Genotype-Tissue Expression (GTEx) project has identified expression and splicing quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues. However, the functional characterization of these QTLs has been limited by the heterogeneous cellular composition of GTEx tissue samples. We mapped interactions between computational estimates of cell type abundance and genotype to identify cell type-interaction QTLs for seven cell types and show that cell type-interaction expression QTLs (eQTLs) provide finer resolution to tissue specificity than bulk tissue cis-eQTLs.
View Article and Find Full Text PDFMany complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release).
View Article and Find Full Text PDFBackground: Current evidence supports the involvement of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and the ε4 allele of APOE gene in hippocampal-dependent functions. Previous studies on the association of Val66Met with whole hippocampal volume included patients of a variety of disorders. However, it remains to be elucidated whether there is an impact of BDNF Val66Met polymorphism on the volumes of the hippocampal subfield volumes (HSv) in cognitively unimpaired (CU) individuals, and the interactive effect with the APOE-ε4 status.
View Article and Find Full Text PDFWe have produced RNA sequencing data for 53 primary cells from different locations in the human body. The clustering of these primary cells reveals that most cells in the human body share a few broad transcriptional programs, which define five major cell types: epithelial, endothelial, mesenchymal, neural, and blood cells. These act as basic components of many tissues and organs.
View Article and Find Full Text PDFWe present ggsashimi, a command-line tool for the visualization of splicing events across multiple samples. Given a specified genomic region, ggsashimi creates sashimi plots for individual RNA-seq experiments as well as aggregated plots for groups of experiments, a feature unique to this software. Compared to the existing versions of programs generating sashimi plots, it uses popular bioinformatics file formats, it is annotation-independent, and allows the visualization of splicing events even for large genomic regions by scaling down the genomic segments between splice sites.
View Article and Find Full Text PDFBackground: The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern.
View Article and Find Full Text PDFOsteoarthritis (OA) is one of the most prevalent articular diseases. The identification of proteins closely associated with the diagnosis, progression, prognosis, and treatment response is dramatically required for this pathology. In this work, differential serum protein profiles have been identified in OA and rheumatoid arthritis (RA) by antibody arrays containing 151 antibodies against 121 antigens in a cohort of 36 samples.
View Article and Find Full Text PDFMany common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants.
View Article and Find Full Text PDF