Publications by authors named "Diego Garcia-Martin"

Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over binary variables using only n qubits, with tunable k > 1.

View Article and Find Full Text PDF

The prospect of achieving quantum advantage with quantum neural networks (QNNs) is exciting. Understanding how QNN properties (for example, the number of parameters M) affect the loss landscape is crucial to designing scalable QNN architectures. Here we rigorously analyze the overparametrization phenomenon in QNNs, defining overparametrization as the regime where the QNN has more than a critical number of parameters M allowing it to explore all relevant directions in state space.

View Article and Find Full Text PDF

We present a quantum circuit that transforms an unknown three-qubit state into its canonical form, up to relative phases, given many copies of the original state. The circuit is made of three single-qubit parametrized quantum gates, and the optimal values for the parameters are learned in a variational fashion. Once this transformation is achieved, direct measurement of outcome probabilities in the computational basis provides an estimate of the tangle, which quantifies genuine tripartite entanglement.

View Article and Find Full Text PDF