Publications by authors named "Diego Forcato"

Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome.

View Article and Find Full Text PDF

Transgenesis in the mouse is an essential tool for the understanding of gene function and genome organization. Here, we describe a simplified microinjection protocol for efficient germline transgenesis and sustained transgene expression in the mouse model employing binary Sleeping Beauty transposon constructs of different topology. The protocol is based on co-injection of supercoiled plasmids or minicircles, encoding the Sleeping Beauty transposase and a transposon construct, into the cytoplasm of murine zygotes.

View Article and Find Full Text PDF

Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species.

View Article and Find Full Text PDF

In inside-out bovine heart sarcolemmal vesicles, p-chloromercuribenzenesulfonate (PCMBS) and n-ethylmaleimide (NEM) fully inhibited MgATP up-regulation of the Na(+)/Ca(2+) exchanger (NCX1) and abolished the MgATP-dependent PtdIns-4,5P2 increase in the NCX1-PtdIns-4,5P2 complex; in addition, these compounds markedly reduced the activity of the PtdIns(4)-5kinase. After PCMBS or NEM treatment, addition of dithiothreitol (DTT) restored a large fraction of the MgATP stimulation of the exchange fluxes and almost fully restored PtdIns(4)-5kinase activity; however, in contrast to PCMBS, the effects of NEM did not seem related to the alkylation of protein SH groups. By itself DTT had no effect on the synthesis of PtdIns-4,5P2 but affected MgATP stimulation of NCX1: moderate inhibition at 1mM MgATP and 1μM Ca(2+) and full inhibition at 0.

View Article and Find Full Text PDF

Phosphatidylinositol biphosphate (PtdIns-4,5P(2)) plays a key role in the regulation of the mammalian heart Na(+)/Ca(2+) exchanger (NCX1) by protecting the intracellular Ca(2+) regulatory site against H(+)(i) and (H(+)(i)+Na(+)(i)) synergic inhibition. MgATP and MgATP-gamma-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P(2) incubated in the absence of MgATP and at normal [Na(+)](i), alkalinization increases the affinity for Ca(2+)(i) to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca(2+)(i) any further.

View Article and Find Full Text PDF