Publications by authors named "Diego F Fiol"

Vacuoleless Gametophytes (VLG) is a DC1 domain protein that was initially characterized as essential for early female and male gametophytes development in Arabidopsis. However, VLG expression was also detected in stamens, pistils and other sporophytic tissues, implying a broader role for this protein. As homozygous insertional VLG lines resulted unviable, we generated Arabidopsis amiRNA VLG knock-down plants to study the role of VLG in sporophyte development.

View Article and Find Full Text PDF

In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions.

View Article and Find Full Text PDF

Nitrogen (N) deficiency is one of the most prevalent nutrient deficiencies in plants, and has a significant impact on crop yields. In this work we aimed to develop and evaluate innovative strategies to mitigate N deficiency. We studied the effect of supplementing tomato plants grown under suboptimal N nutrition with chitosan microparticles (CS-MPs) during short- and long-term periods.

View Article and Find Full Text PDF

The development of the male gametophyte is a tightly regulated process that requires the precise control of cell division and gene expression. A relevant aspect to understand the events underlying pollen development regulation constitutes the identification and characterization of the genes required for this process. In this work, we showed that the DC1 domain protein BINUCLEATE POLLEN (BNP) is essential for pollen development and germination.

View Article and Find Full Text PDF
Article Synopsis
  • E3 ubiquitin ligases, specifically SCF-type ligases in plants, are crucial for regulating hormone signaling by targeting proteins for degradation, impacting various plant biological processes.
  • The specific F-box proteins TIR1 and COI1 interact with transcriptional repressors in response to auxin and jasmonates, facilitating hormone perception and gene activation.
  • Recent findings highlight the significance of S-nitrosation (a type of protein modification by nitric oxide) on E3 ligases like TIR1 and ASK1, enhancing their interactions and functions, particularly in stress responses and hormone signaling pathways.
View Article and Find Full Text PDF

Mitochondrial adrenodoxins (ADXs) are small iron-sulfur proteins with electron transfer properties. In animals, ADXs transfer electrons between an adrenodoxin reductase (ADXR) and mitochondrial P450s, which is crucial for steroidogenesis. Here we show that a plant mitochondrial steroidogenic pathway, dependent on an ADXR-ADX-P450 shuttle, is essential for female gametogenesis and early embryogenesis through a maternal effect.

View Article and Find Full Text PDF

The cytochrome P450 superfamily is a large enzymatic protein family that is widely distributed along diverse kingdoms. In plants, cytochrome P450 monooxygenases (CYPs) participate in a vast array of pathways leading to the synthesis and modification of multiple metabolites with variable and important functions during different stages of plant development. This includes the biosynthesis and degradation of a great assortment of compounds implicated in a variety of physiological responses, such as signaling and defense, organ patterning and the biosynthesis of structural polymers, among others.

View Article and Find Full Text PDF

Agrobiotechnology challenges involve the generation of new sustainable bioactives with emerging properties as plant biostimulants with reduced environment impact. We analyzed the potential use of recently developed chitosan microparticles (CS-MP) as growth promoters of tomato which constitutes one of the most consumed vegetable crops worldwide. Treatments of tomato seeds with CS-MP improved germination and vigor index.

View Article and Find Full Text PDF

Mediator is a large multiprotein complex that is required for the transcription of most, if not all, genes transcribed by RNA Polymerase II. A core set of subunits is essential to assemble a functional Mediator and, therefore, the corresponding loss-of-function mutants are expected to be lethal. The MED30 subunit is essential in animal systems, but is absent in yeast.

View Article and Find Full Text PDF

The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1-cullin-F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCF complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCF assembly.

View Article and Find Full Text PDF

In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC).

View Article and Find Full Text PDF

In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS).

View Article and Find Full Text PDF

In plants, indole-3-acetic acid (IAA) amido hydrolases (AHs) participate in auxin homeostasis by releasing free IAA from IAA-amino acid conjugates. We investigated the role of IAR3, a member of the IAA amido hydrolase family, in the response of Solanaceous plants challenged by biotrophic and hemi-biotrophic pathogens. By means of genome inspection and phylogenic analysis we firstly identified IAA-AH sequences and putative IAR3 orthologs in Nicotiana benthamiana, tomato and potato.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) can function as signaling molecules, regulating key aspects of plant development, or as toxic compounds leading to oxidative damage. In this article, we show that the regulation of ROS production during megagametogenesis is largely dependent on MSD1, a mitochondrial Mn-superoxide dismutase. Wild-type mature embryo sacs show ROS exclusively in the central cell, which appears to be the main source of ROS before pollination.

View Article and Find Full Text PDF

Background: Tilapia (Oreochromis mossambicus) are euryhaline fishes capable of tolerating large salinity changes. In a previous study aimed to identify genes involved in osmotolerance, we isolated an mRNA sequence with similarity to GRAIL (Gene Related to Anergy In Lymphocytes), which is a critical regulator of adaptive immunity and development. Tilapia GRAIL contains a PA (protease associated) domain and a C3H2C3 RING finger domain indicative of E3 ubiquitin ligase activity.

View Article and Find Full Text PDF

A novel tilapia prolactin (PRL) receptor (OmPRLR2) was identified based on its induction during hyperosmotic stress. OmPRLR2 protein shows 28% identity to tilapia OmPRLR1 and 26% identity to human PRLR. Comparison of OmPRLR1 and OmPRLR2 revealed conserved features of cytokine class I receptors (CKR1): a WS domain and transmembrane domain, two pairs of cysteines and N-glycosylation motifs in the extracellular region, CKR1 boxes I and II, and three tyrosines in the intracellular region.

View Article and Find Full Text PDF

In their aqueous habitats, fish are exposed to a wide range of osmotic conditions and differ in their abilities to respond adaptively to these variations in salinity. Fish species that inhabit environments characterized by significant salinity fluctuation (intertidal zone, estuaries, salt lakes, etc.) are euryhaline and able to adapt to osmotic stress.

View Article and Find Full Text PDF

We recently cloned a novel osmotic stress transcription factor 1 (OSTF1) from gills of euryhaline tilapia (Oreochromis mossambicus) and demonstrated that acute hyperosmotic stress transiently increases OSTF1 mRNA and protein abundance [Fiol DF, Kültz D (2005) Proc Natl Acad Sci USA102, 927-932]. In this study, a genome-wide search was conducted to identify nine distinct mouse transforming growth factor (TGF)-beta-stimulated clone 22 domain (TSC22D) transcripts, including glucocorticoid-induced leucine zipper (GILZ), that are orthologs of OSTF1. These nine TSC22D transcripts are encoded at four loci on chromosomes 14 (TSC22D1, two splice variants), 3 (TSC22D2, four splice variants), X (TSC22D3, two splice variants), and 5 (TSC22D4).

View Article and Find Full Text PDF

Salinity is a major environmental factor that strongly influences cellular and organismal function. We have used the euryhaline fish Oreochromis mossambicus to identify and annotate immediate hyperosmotic stress responsive molecular mechanisms and biological processes in gill epithelial cells. Using a suppression subtractive hybridization (SSH) approach, we have identified and cloned 20 novel immediate early genes whose mRNAs are induced in gill epithelial cells 4 h after transfer of fish from freshwater (FW) to seawater (SW).

View Article and Find Full Text PDF

Mechanisms of induction of osmotic stress transcription factor 1 (Ostf1) were analyzed in gill epithelium of tilapia exposed to salinity stress. Experiments with primary cultures of gill epithelial cells revealed that hyperosmotic Ostf1 induction was independent of systemic factors. In addition, the synthetic glucocorticoid receptor agonist dexamethasone did not affect Ostf1 levels, arguing against cortisol being the signal for Ostf1 induction during hyperosmotic stress.

View Article and Find Full Text PDF

Gills of euryhaline teleosts are excellent models for studying osmotic-stress adaptation because they directly contact the aquatic environment and are an important effector tissue during osmotic stress. We acclimated tilapia (Oreochromis mossambicus) from fresh water (FW) to seawater (SW); performed suppression subtractive hybridization of gill mRNAs; and identified two transcription factors, osmotic stress transcription factor 1 (OSTF1) and the tilapia homolog of transcription factor II B (TFIIB), that are rapidly and transiently induced during hyperosmotic stress. mRNA levels increase 6-fold for OSTF1 and 4-fold for TFIIB, and they reach maxima 2 h after SW transfer.

View Article and Find Full Text PDF

A protein kinase activity that can phosphorylate and inactivate rice (Oryza sativa) sucrose-phosphate synthase (SPS; UDP-glucose: d-fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.

View Article and Find Full Text PDF