We report a two-component label system comprising a chlorite-containing polymer film and an acid-containing polymer film that can release antimicrobial ClO gas upon adhering the two films together to enable a reaction of the chlorite and acid under moisture exposure. The chlorite-containing film comprises a commercial acrylate-based pressure-sensitive adhesive polymer impregnated with sodium chlorite. The acid-containing film comprises a commercial poly(vinyl alcohol) polymer loaded with tartaric acid.
View Article and Find Full Text PDFWe study the solvation of a single nanoparticle in poly(methyl methacrylate)-CO2 mixture at coexistence by using statistical classical density-functional theory. In the temperature range where there is triple-phase coexistence, the lowest solvation free energy occurs at the triple point pressure. Beyond the end point temperature of the triple line, and for particle radii less than a critical value, there is an optimal pressure in the solvation free energy, as a result of the competition between the creation of nanoparticle-fluid interface and the formation of cavity volume.
View Article and Find Full Text PDFWe combine density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in two polymer–CO2 mixture systems, poly(methyl methacrylate) (PMMA)–CO2 and polystyrene (PS)–CO2. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature (Tc), we find that there is a discontinuous drop in the nucleation barrier as a function of increased initial CO2 pressure (P0), as a result of an underlying metastable transition from a CO2-rich-vapor phase to a CO2-rich-liquid phase.
View Article and Find Full Text PDFWe combine a newly developed density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in compressible polymer-CO2 mixtures. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature, we find that there is a discontinuous drop in the nucleation barrier with increased initial CO2 pressure, as a result of an underlying metastable transition from a CO2-rich-vapor phase to a CO2-rich-liquid phase.
View Article and Find Full Text PDFWe propose a density-functional theory (DFT) describing inhomogeneous polymer-carbon dioxide mixtures based on a perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS). The weight density functions from fundamental measure theory are used to extend the bulk excess Helmholtz free energy to the inhomogeneous case. The additional long-range dispersion contributions are included using a mean-field approach.
View Article and Find Full Text PDFThis paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants.
View Article and Find Full Text PDF