Universal properties of turbulence have been associated traditionally with very high Reynolds numbers, but recent work has shown that the onset of the power laws in derivative statistics occurs at modest microscale Reynolds numbers of the order of 10, with the corresponding exponents being consistent with those for the inertial range structure functions at very high Reynolds numbers. In this paper we use well-resolved direct numerical simulations of homogeneous and isotropic turbulence to establish this result for a range of initial conditions with different forcing mechanisms. We also show that the moments of transverse velocity gradients possess larger scaling exponents than those of the longitudinal moments, confirming past results that the former are more intermittent than the latter.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2022
Inspection of available data on the decay exponent for the kinetic energy of homogeneous and isotropic turbulence (HIT) shows that it varies by as much as 100%. Measurements and simulations often show no correspondence with theoretical arguments, which are themselves varied. This situation is unsatisfactory given that HIT is a building block of turbulence theory and modelling.
View Article and Find Full Text PDFGas phase intermolecular energy transfer (IET) is a fundamental component of accurately explaining the behavior of gas phase systems in which the internal energy of particular modes of molecules is greatly out of equilibrium. In this work, chemical dynamics simulations of mixed benzene/N baths with one highly vibrationally excited benzene molecule (Bz) are compared to experimental results at 140 K. Two mixed bath models are considered.
View Article and Find Full Text PDFMixing of passive scalars in compressible turbulence does not obey the same classical Reynolds number scaling as its incompressible counterpart. We first show from a large database of direct numerical simulations that even the solenoidal part of the velocity field fails to follow the classical incompressible scaling when the forcing includes a substantial dilatational component. Though the dilatational effects on the flow remain significant, our main results are that both the solenoidal energy spectrum and the passive scalar spectrum assume incompressible forms, and that the scalar gradient essentially aligns with the most compressive eigenvalue of the solenoidal part, provided that only the solenoidal components are consistently used for scaling.
View Article and Find Full Text PDFWe consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different "Reynolds numbers" reflecting a multitude of anomalous scaling exponents.
View Article and Find Full Text PDFChemical dynamics simulations were performed to study collisional intermolecular energy transfer from a thermalized N bath at 300 K to vibrationally "cold" CF. The vibrational temperature of CF is taken as 50 K, which corresponds to a classical vibrational energy of 2.98 kcal/mol.
View Article and Find Full Text PDFTurbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries.
View Article and Find Full Text PDFVisualization and data analysis are crucial in analyzing and understanding a turbulent-flow simulation of size 4,096(3) cells per time slice (68 billion cells) and 17 time slices (one trillion total cells). The visualization techniques used help scientists investigate the dynamics of intense events individually and as these events form clusters.
View Article and Find Full Text PDF