Nanowire geometry allows semiconductor heterostructures to be obtained that are not achievable in planar systems, as in, for example, axial superlattices made of large lattice mismatched materials. This provides a great opportunity to explore new optical transitions and vibrational properties resulting from the superstructure. Moreover, superlattice nanowires are expected to show improved thermoelectric properties, owing to the dominant role of surfaces and interfaces that can scatter phonons more effectively, reducing the lattice thermal conductivity.
View Article and Find Full Text PDFRecently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type basal stacking fault and investigate its structural and electronic properties.
View Article and Find Full Text PDFRecent advances in nanowire synthesis have enabled the realization of crystal phases that in bulk are attainable only under extreme conditions, .., high temperature and/or high pressure.
View Article and Find Full Text PDF