Passive radar is a technology that has huge potential for airspace monitoring, taking advantage of existing transmissions. However, to predict whether particular targets can be measured in a particular scenario, it is necessary to be able to model the received signal. In this paper, we present the results of a campaign in which a Pilatus PC-12 single-engine aircraft was measured with a passive radar system relying on DVB-T transmission from a single transmitter.
View Article and Find Full Text PDFThis paper deals with the problem of detection and direction of arrival (DOA) estimation of slowly moving targets against clutter in multichannel mobile passive radar. A dual cancelled channel space-time adaptive processing (STAP) scheme is proposed, aiming at reducing the system computational complexity, as well as the amount of required training data, compared to a conventional full array solution. The proposed scheme is shown to yield comparable target detection capability and DOA estimation accuracy with respect to the corresponding full array solution, despite the lower computational cost required.
View Article and Find Full Text PDFResearch in passive radar has moved its focus towards passive radar on moving platforms in recent years with the purpose of moving target indication and ground imaging via synthetic aperture radar. This is also fostered by the progress in hardware miniaturization, which alleviates the installation of the required hardware on moving platforms. Terrestrial transmitters, commonly known as illuminators of opportunity in the passive radar community, usually emit the signals in the Very High Frequency (VHF) or Ultra High Frequency (UHF) band.
View Article and Find Full Text PDF