A series of 2-nitroimidazole-1,2,3-triazole sulfonamide hybrid analogs were designed using medicinal chemistry approaches, such as bioisosterism, molecular hybridization, Topliss tree decision, and Craig plot. A total of 24 compounds were synthesized via click chemistry in satisfactory yields. Overall, analogs 15 a-x exhibited relevant in vitro anti-trypanosomatid activity against amastigote forms of T.
View Article and Find Full Text PDFJ Med Chem
February 2024
A series of 28 compounds, 3-nitro-1-1,2,4-triazole, were synthesized by click-chemistry with diverse substitution patterns using medicinal chemistry approaches, such as bioisosterism, Craig-plot, and the Topliss set with excellent yields. Overall, the analogs demonstrated relevant in vitro antitrypanosomatid activity. Analog (R = 4-OCF-Ph, IC = 0.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder caused by accumulation of amyloid-β oligomers (AβO) in the brain, neuroinflammation, oxidative stress, and cognitive decline. Grandisin, a tetrahydrofuran neolignan, exhibits relevant anti-inflammatory and antioxidant properties. Interestingly, grandisin-based compounds were shown to prevent AβO-induced neuronal death in vitro.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune disease that causes cartilage damage. Anti-inflammatories are widely used in the management of RA, but they can have side effects such as gastrointestinal and/or cardiovascular disorders. Studies published by our group showed that the synthesis of hybrid triazole analogs neolignan-celecoxib containing the substituent groups sulfonamide (L15) or carboxylic acid (L18) exhibited anti-inflammatory activity in an acute model of inflammation, inhibited expression of P-selectin related to platelet activation and did not induce gastric ulcer, minimizing the related side effects.
View Article and Find Full Text PDFChagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments.
View Article and Find Full Text PDFNew treatment approaches targeting cutaneous leishmaniasis (CL) are required since conventional drugs exhibit limitations due to their several adverse effects and toxicity. In this study, we aimed to evaluate the in vivo intralesional treatment efficacy of five isoxazole derivatives previously synthesized and effective in vitro against intracellular amastigote forms of . Among the tested analogues, exhibited relevant in vivo therapeutic effects.
View Article and Find Full Text PDFChagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease.
View Article and Find Full Text PDFThis study reports the synthesis of novel neolignans-celecoxib hybrids and the evaluation of their biological activity. Analogs8-13(L13-L18) exhibited anti-inflammatory activity, inhibited glycoprotein expression (P-selectin) related to platelet activation, and were considered non- ulcerogenic in the animal model, even with the administration of 10 times higher than the dose used in reference therapy. In silico drug-likeness showed that the analogs are compliant with Lipinski's rule of five.
View Article and Find Full Text PDFChagas disease affects 6-8 million people worldwide, remaining a public health concern. Toxicity, several adverse effects and inefficiency in the chronic stage of the disease are the major challenges regarding the available treatment protocols. This work involved the synthesis of twenty-two 1,4-disubstituted-1,2,3-triazole analogues of benznidazole (BZN), by using a click chemistry strategy.
View Article and Find Full Text PDFArch Pharm (Weinheim)
February 2020
Nineteen 3,5-disubstituted-isoxazole analogs were synthesized based on nitrofuran scaffolds, by a [3 + 2] cycloaddition reaction between terminal acetylenes and 5-nitrofuran chloro-oxime. The compounds were obtained in moderate to very good yields (45-91%). The antileishmanial activity was assayed against the promastigote and amastigote forms of Leishmania (Leishmania) amazonensis.
View Article and Find Full Text PDFIsoxazole analogues derived from the neolignans veraguensin, grandisin, and machilin G were previously synthesized with different substitution patterns through the bioisosterism strategy. These compounds were tested on intracellular amastigotes of Leishmania (Leishmania) amazonensis; the derivatives proved to be active against intracellular amastigotes, with IC values ranging from 0.4 to 25 μM.
View Article and Find Full Text PDFUsing bioisosterism as a medicinal chemistry tool, 16 3,5-diaryl-isoxazole analogues of the tetrahydrofuran neolignans veraguensin, grandisin and machilin G were synthesized via 1,3-dipolar cycloaddition reactions, with yields from 43% to 90%. Antitrypanosomatid activities were evaluated against Trypanosoma cruzi, Leishmania (L.) amazonensis and Leishmania (V.
View Article and Find Full Text PDFSixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.
View Article and Find Full Text PDF