Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change.
View Article and Find Full Text PDFThe role of historical factors in establishing patterns of diversity in tropical mountains is of interest to understand the buildup of megadiverse biotas. In these regions, the historical processes of range fragmentation and contraction followed by dispersal are thought to be mediated by the interplay between rugged relief (complex topography) and climate fluctuations and likely explain most of the dynamics of diversification in plants and animals. Although empirical studies addressing the interaction between climate and topography have provided invaluable insights into population divergence and speciation patterns in tropical montane organisms, a more detailed and robust test of such processes in an explicit spatio-temporal framework is still lacking.
View Article and Find Full Text PDFExamining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection.
View Article and Find Full Text PDFWe contribute to the recent review of Rieux & Balloux, 2016, Mol. Ecol., 25, 1911 on inferences from tip-dated phylogenies by developing their discussion on the influence of population size (N ) under panmixia for the estimation of substitution rate (μ).
View Article and Find Full Text PDFWe apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions.
View Article and Find Full Text PDFHow urbanization shapes population genomic diversity and evolution of urban wildlife is largely unexplored. We investigated the impact of urbanization on white-footed mice,Peromyscus leucopus,in the New York City (NYC) metropolitan area using coalescent-based simulations to infer demographic history from the site-frequency spectrum. We assigned individuals to evolutionary clusters and then inferred recent divergence times, population size changes and migration using genome-wide single nucleotide polymorphisms genotyped in 23 populations sampled along an urban-to-rural gradient.
View Article and Find Full Text PDFWhile welcoming the comment of Ho et al. (2015), we find little that undermines the strength of our criticism, and it would appear they have misunderstood our central argument. Here we respond with the purpose of reiterating that we are (i) generally critical of much of the evidence presented in support of the time-dependent molecular rate (TDMR) hypothesis and (ii) specifically critical of estimates of μ derived from tip-dated sequences that exaggerate the importance of purifying selection as an explanation for TDMR over extended timescales.
View Article and Find Full Text PDFPremise Of The Study: Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences.
View Article and Find Full Text PDFThe increased availability of spatial data and methodological developments in species distribution modelling has lead to concurrent advances in phylogeography, broadening the scope of questions studied, as well as providing unprecedented insights. Given the species-specific nature of the information provided by ecological niche models (ENMs), whether it is on the environmental tolerances of species or their estimated distribution, today or in the past, it is perhaps not surprising that ENMs have rapidly become a common tool in phylogeographic analysis. Such information is essential to phylogeographic tests that provide important biological insights.
View Article and Find Full Text PDFBackground: The extent of phenotypic differentiation in response to local environmental conditions is a key component of species adaptation and persistence. Understanding the structuring of phenotypic diversity in response to local environmental pressures can provide important insights into species evolutionary dynamics and responses to environmental change. This work examines the influence of steep environmental gradients on intraspecific phenotypic variation and tests two hypotheses about how the tropical soft grass mouse, Akodon mollis (Cricetidae, Rodentia), contends with the disparate environmental conditions encompassed by its broad distribution.
View Article and Find Full Text PDFUnderstanding the genetic consequences of shifting species distributions is critical for evaluating the impact of climate-induced distributional changes. However, the demographic expansion associated with the colonization process typically takes place across a heterogeneous environment, with population sizes and migration rates varying across the landscape. Here we describe an approach for coupling ecological-niche models (ENMs) with demographic and genetic models to explore the genetic consequences of distributional shifts across a heterogeneous landscape.
View Article and Find Full Text PDF