Zika virus (ZIKV) disease continues to be a threat to public health, and it is estimated that millions of people have been infected and that there have been more cases of serious complications than those already reported. Despite many studies on the pathogenesis of ZIKV, several of the genes involved in the malformations associated with viral infection are still unknown. In this work, the morphological and molecular changes in the cortex and cerebellum of mice infected with ZIKV were evaluated.
View Article and Find Full Text PDFThe spread of Zika virus (ZIKV) from the African continent to the Americas promoted its molecular evolution, as reflected by mutations in its RNA genome. Most of the ZIKV genome sequences in the GenBank database have incomplete 5' and 3' UTR sequences, reflecting the deficiency of whole-genome sequencing technologies to resolve the sequences of the genome ends. We modified a protocol for rapid amplification of cDNA ends (RACE) to determine the complete sequences of the 5' and 3' UTRs of a previously reported ZIKV isolate (GenBank no.
View Article and Find Full Text PDFThe real-time reverse transcription-polymerase chain reaction (real-time RT-qPCR) has become a leading technique for the detection and quantification of arboviruses, including Chikungunya, Dengue, and Zika viruses. In this study, an updated real-time RT-qPCR assay was designed and evaluated together with a synthetic positive-control chimeric RNA for the simultaneous detection and quantification of Chikungunya, Dengue, and Zika viruses. Amplification assays were performed to verify the construct integrity and optimal reaction/thermal cycling conditions.
View Article and Find Full Text PDFDengue is a mosquito-borne disease that is of major importance in public health. Although it has been extensively studied at the molecular level, sequencing of the 5' and 3' ends of the untranslated regions (UTR) commonly requires specific approaches for completion and corroboration. The present study aimed to characterize the 5' and 3' ends of dengue virus types 1 to 4.
View Article and Find Full Text PDFThe most life-threatening effect of the Dengue virus (DENV) infection is an acute destabilization of the microvascular endothelial cell (MEC) barrier leading to plasma leakage, hypovolemic shock and haemorrhage. However, the underlying cellular mechanisms responsible for the dysfunction of MECs are not well understood. To identify potential cellular processes altered during DENV infection of MECs, expression profiles of cytokines/growth factors and microRNAs were measured by Luminex assay and next generation sequencing, respectively.
View Article and Find Full Text PDF