Photonic biosensors that use optical resonances to amplify signals from refractive index changes offer high sensitivity, real-time readout, and scalable, low-cost fabrication. However, when used with classic affinity assays, they struggle with noise from nonspecific binding and are limited by the low refractive index and small size of target biological molecules. In this Letter, we evaluate the performance of an integrated microring photonic biosensor using the high contrast cleavage detection (HCCD) mechanism, which we recently introduced.
View Article and Find Full Text PDFUsing porous silicon (PSi) interferometer sensors, we show the first experimental implementation of the high contrast cleavage detection (HCCD) mechanism. HCCD makes use of dramatic optical signal amplification caused by cleavage of high-contrast nanoparticle labeled reporters instead of the capture of low-index biological molecules. An approximately 2 nm reflectance peak shift was detected after cleavage of DNA-quantum dot reporters from the PSi surface via exposure to a 12.
View Article and Find Full Text PDFOptical frequency synthesizers have widespread applications in optical spectroscopy, frequency metrology, and many other fields. However, their applicability is currently limited by size, cost, and power consumption. Silicon photonics technology, which is compatible with complementary-metal-oxide-semiconductor fabrication processes, provides a low-cost, compact size, lightweight, and low-power-consumption solution.
View Article and Find Full Text PDFWe present a CMOS-compatible, Q-switched mode-locked integrated laser operating at 1.9 µm with a compact footprint of 23.6 × 0.
View Article and Find Full Text PDFA tunable laser source is a crucial photonic component for many applications, such as spectroscopic measurements, wavelength division multiplexing (WDM), frequency-modulated light detection and ranging (LIDAR), and optical coherence tomography (OCT). In this article, we demonstrate the first monolithically integrated erbium-doped tunable laser on a complementary-metal-oxide-semiconductor (CMOS)-compatible silicon photonics platform. Erbium-doped AlO sputtered on top is used as a gain medium to achieve lasing.
View Article and Find Full Text PDFMany optical systems require broadband filters with sharp roll-offs for efficiently splitting or combining light across wide spectra. While free space dichroic filters can provide broadband selectivity, on-chip integration of these high-performance filters is crucial for the scalability of photonic applications in multi-octave interferometry, spectroscopy, and wideband wavelength-division multiplexing. Here we present the theory, design, and experimental characterization of integrated, transmissive, 1 × 2 port dichroic filters using spectrally selective waveguides.
View Article and Find Full Text PDFLaser sources in the mid-infrared are of great interest due to their wide applications in detection, sensing, communication and medicine. Silicon photonics is a promising technology which enables these laser devices to be fabricated in a standard CMOS foundry, with the advantages of reliability, compactness, low cost and large-scale production. In this paper, we demonstrate a holmium-doped distributed feedback laser monolithically integrated on a silicon photonics platform.
View Article and Find Full Text PDFEfficient complementary metal-oxide semiconductor-based nonlinear optical devices in the near-infrared are in strong demand. Due to two-photon absorption in silicon, however, much nonlinear research is shifting towards unconventional photonics platforms. In this work, we demonstrate the generation of an octave-spanning coherent supercontinuum in a silicon waveguide covering the spectral region from the near- to shortwave-infrared.
View Article and Find Full Text PDFWe present, to the best of our knowledge, the first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform. An integrated transmitting and receiving frequency-modulated continuous-wave circuit was initially developed and tested to confirm on-chip ranging. Simultaneous distance and velocity measurements were performed using triangular frequency modulation.
View Article and Find Full Text PDFMid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.
View Article and Find Full Text PDFWe demonstrate passive large-scale nanophotonic phased arrays in a CMOS-compatible silicon photonic platform. Silicon nitride waveguides are used to allow for higher input power and lower phase variation compared to a silicon-based distribution network. A phased array at an infrared wavelength of 1550 nm is demonstrated with an ultra-large aperture size of 4  mm×4  mm, achieving a record small and near diffraction-limited spot size of 0.
View Article and Find Full Text PDFWe demonstrate swept-wavelength operation of an erbium-doped fiber laser using a tunable silicon microring cavity. The microring cavity is designed to have 35 nm free spectral range, a high Q of 1.5 × 10, and low insertion loss of <0.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection.
View Article and Find Full Text PDFThe backreflection in commonly used grating couplers on silicon-on-insulator (SOI) is not negligible for many applications. This reflection is dramatically reduced in our improved compact grating coupler design, which directs the reflection away from the input waveguide. Realized devices on SOI show that the reflection can be reduced down to -50 dB without an apparent transmission penalty.
View Article and Find Full Text PDF