Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) are key organisms in viticultural ecosystems as they provide many ecosystem services to soils and plants. Data about AMF community dynamics over time are relatively scarce and at short time scales. Many factors such as the soil, climate, and agricultural practices could modify the dynamics and functions of microbial communities.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) fungi, symbionts of most land plants, increase plant fitness in metal contaminated soils. To further understand the mechanisms of metal tolerance in the AM symbiosis, the expression patterns of the maize Heavy Metal ATPase (HMA) family members and the ionomes of non-mycorrhizal and mycorrhizal plants grown under different Cu supplies were examined. Expression of ZmHMA5a and ZmHMA5b, whose encoded proteins were predicted to be localized at the plasma membrane, was up-regulated by Cu in non-mycorrhizal roots and to a lower extent in mycorrhizal roots.
View Article and Find Full Text PDFArbuscular mycorrhiza, one of the oldest interactions on earth (~ 450 million years old) and a first-class partner for plants to colonize emerged land, is considered one of the most pervasive ecological relationships on the globe. Despite how important and old this interaction is, its discovery was very recent compared to the long story of land plant evolution. The story of the arbuscular mycorrhiza cannot be addressed apart from the history, controversies, and speculations about mycorrhiza in its broad sense.
View Article and Find Full Text PDFModern agriculture is currently undergoing rapid changes in the face of the continuing growth of world population and many ensuing environmental challenges. Crop quality is becoming as important as crop yield and can be characterised by several parameters. For fruits and vegetables, quality descriptors can concern production cycle (e.
View Article and Find Full Text PDFFolia Microbiol (Praha)
June 2021
Crop inoculation with Glomus cubense isolate (INCAM-4, DAOM-241198) promotes yield in banana, cassava, forages, and others. Yield improvements range from 20 to 80% depending on crops, nutrient supply, and edaphoclimatic conditions. However, it is difficult to connect yield effects with G.
View Article and Find Full Text PDFThe authors of the above-mentioned published article inadvertently omitted Dirk Redecker, Dioumacor Fall and Diaminatou Sanogo from the list of authors. The names and their affiliations presented in this paper.
View Article and Find Full Text PDFArbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation).
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) play a major role as biofertilizer for sustainable agriculture. Nevertheless, it is still poorly documented whether inoculated AMF can successfully establish in field soils as exotic AMF and improve plant growth and productivity. Further, the fate of an exogenous inoculum is still poorly understood.
View Article and Find Full Text PDFPlants interact with microbes whose ultimate aim is to exploit plant carbohydrates for their reproduction. Plant-microbe interactions (PMIs) are classified according to the nature of their trophic exchanges: while mutualistic microbes trade nutrients with plants, pathogens unilaterally divert carbohydrates. The early responses following microbe recognition and the subsequent control of plant sugar distribution are still poorly understood.
View Article and Find Full Text PDFPesticide contamination of the environment can result from agricultural practices. Persistence of pesticide residues is a threat to the soil biota including plant roots and beneficial microorganisms, which support an important number of soil ecosystem services. Arbuscular mycorrhizal fungi (AMF) are key symbiotic microorganisms contributing to plant nutrition.
View Article and Find Full Text PDFSulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency.
View Article and Find Full Text PDFUnlabelled: Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored.
View Article and Find Full Text PDFInorganic phosphate (Pi) plays a key role in the development of arbuscular mycorrhizal (AM) symbiosis, which is favoured when Pi is limiting in the environment. We have characterized the Medicago truncatula hypermycorrhizal B9 mutant for its response to limiting (P/10) and replete (P2) Pi. On P2, mycorrhization was significantly higher in B9 plants than in wild-type (WT).
View Article and Find Full Text PDFThe mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists.
View Article and Find Full Text PDFFluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca(2+) in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca(2+)-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis.
View Article and Find Full Text PDFCadmium is a serious environmental pollution threats to the planet. Its accumulation in plants affects many cellular functions, resulting in growth and development inhibition, whose mechanisms are not fully understood. However, some fungi forming arbuscular mycorrhizal symbiosis with the majority of plant species have the capacity to buffer the deleterious effect of this heavy metal.
View Article and Find Full Text PDFWe identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The identification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M.
View Article and Find Full Text PDFThe ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V.
View Article and Find Full Text PDFRoot colonization by arbuscular mycorrhizal (AM) fungi of Artemisia umbelliformis, investigated in natural and cultivated sites in the Southern Alps of France, showed typical structures (arbuscules, vesicles, hyphae) as well as spores and mycelia in its rhizosphere. Several native AM fungi belonging to different Glomeromycota genera were identified as colonizers of A. umbelliformis roots, including Glomus tenue, Glomus intraradices, G.
View Article and Find Full Text PDFAlthough plant biotisation with arbuscular mycorrhizal fungi (AMF) is a promising strategy for improving plant health, a better knowledge regarding the molecular mechanisms involved is required. In this context, we sought to analyse the root proteome of grapevine rootstock Selection Oppenheim 4 (SO4) upon colonisation with two AMF. As expected, AMF colonisation stimulates plant biomass.
View Article and Find Full Text PDFWith the aim of obtaining new strategies to control plant diseases, we investigated the ability of antagonistic lipopolypeptides (paenimyxin) from Paenibacillus sp. strain B2 to elicit hydrogen peroxide (H₂O₂) production and several defense-related genes in the model legume Medicago truncatula. For this purpose, M.
View Article and Find Full Text PDFThe beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution.
View Article and Find Full Text PDFExpression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development.
View Article and Find Full Text PDF