Publications by authors named "Diede Oudshoorn"

Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network.

View Article and Find Full Text PDF

Unlabelled: Infection with nidoviruses like corona- and arteriviruses induces a reticulovesicular network of interconnected endoplasmic reticulum (ER)-derived double-membrane vesicles (DMVs) and other membrane structures. This network is thought to accommodate the viral replication machinery and protect it from innate immune detection. We hypothesized that the innate immune response has tools to counteract the formation of these virus-induced replication organelles in order to inhibit virus replication.

View Article and Find Full Text PDF

All eukaryotic positive-stranded RNA (+RNA) viruses appropriate host cell membranes and transform them into replication organelles, specialized micro-environments that are thought to support viral RNA synthesis. Arteriviruses (order Nidovirales) belong to the subset of +RNA viruses that induce double-membrane vesicles (DMVs), similar to the structures induced by e.g.

View Article and Find Full Text PDF

Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle East Respiratory Syndrome coronavirus; MERS-CoV) emerged, causing 49 human cases thus far, of which 23 had a fatal outcome.

View Article and Find Full Text PDF

Detection of invading pathogens by pattern recognition receptors (PRRs) is crucial for the activation of the innate immune response. These sensors signal through intertwining signaling cascades which result in the expression of pro-inflammatory cytokines and type I interferons. Conjugation, or binding, of ubiquitin and ubiquitin-like modifiers (UBLs) to a plethora of immune signaling molecules forms a common theme in innate immune regulation.

View Article and Find Full Text PDF

Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not.

View Article and Find Full Text PDF