Plants often respond to drier climates by slow evolutionary adaptations from fast-growing to stress-tolerant species. These evolutionary adaptations increase the plants' resilience to droughts but involve productivity losses that bear on agriculture and food security. Plants also respond by spatial self-organization, through fast vegetation patterning involving differential plant mortality and increased water availability to the surviving plants.
View Article and Find Full Text PDFThe epidemiology and evolution of diseases unfold in populations that are rarely homogeneous. Instead, hosts infected by pathogens often form metapopulations, in which local populations connected by the movement of hosts experience different demographic and epidemiological conditions. Here, we develop a general theory of the evolution of pathogens in heterogeneous metapopulations.
View Article and Find Full Text PDFPurpose And Objective: To develop expert consensus statements on multiparametric dose prescriptions for stereotactic body radiotherapy (SBRT) aligning with ICRU report 91. These statements serve as a foundational step towards harmonizing current SBRT practices and refining dose prescription and documentation requirements for clinical trial designs.
Materials And Methods: Based on the results of a literature review by the working group, a two-tier Delphi consensus process was conducted among 24 physicians and physics experts from three European countries.
What drives the emergence of new species has fascinated biologists since Darwin. Reproductive barriers to gene flow are a key step in the formation of species, and recent advances have shed new light on how these are established. Genetic, genomic, and comparative techniques, together with improved theoretical frameworks, are increasing our understanding of the underlying mechanisms.
View Article and Find Full Text PDFCope's rule posits that evolution gradually increases the body size in lineages. Over the last decades, two schools of thought have fueled a debate on the applicability of Cope's rule by reporting empirical evidence, respectively, for and against Cope's rule. The apparent contradictions thus documented highlight the need for a comprehensive process-based synthesis through which both positions of this debate can be understood and reconciled.
View Article and Find Full Text PDFSexual size dimorphism (SSD) is caused by differences in selection pressures and life-history trade-offs faced by males and females. Proximate causes of SSD may involve sex-specific mortality, energy acquisition, and energy expenditure for maintenance, reproductive tissues, and reproductive behavior. Using a quantitative, individual-based, eco-genetic model parameterized for North Sea plaice, we explore the importance of these mechanisms for female-biased SSD, under which males are smaller and reach sexual maturity earlier than females (common among fish, but also arising in arthropods and mammals).
View Article and Find Full Text PDFPlant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints.
View Article and Find Full Text PDFFisheries have reduced the abundances of large piscivores-such as gadids (cod, pollock, etc.) and tunas-in ecosystems around the world. Fisheries also target smaller species-such as herring, capelin, and sprat-that are important parts of the piscivores' diets.
View Article and Find Full Text PDFClimatic and other extreme events threaten the globalized economy, which relies on increasingly complex and specialized supply-chain networks. Disasters generate (i) direct economic losses due to reduced production in the locations where they occur, and (ii) to indirect losses from the supply shortages and demand changes that cascade along the supply chains. Firms can use inventories to reduce their risk of shortages.
View Article and Find Full Text PDFAbstractMany species are subject to seasonal cycles in resource availability, affecting the timing of their reproduction. Using a stage-structured consumer-resource model in which juvenile development and maturation are resource dependent, we study how a species' reproductive schedule evolves, dependent on the seasonality of its resource. We find three qualitatively different reproduction modes.
View Article and Find Full Text PDFIt is well recognized that spatial heterogeneity and overall productivity have important consequences for the diversity and community structure of food webs. Yet, few, if any, studies have considered the effects of heterogeneous spatial distributions of primary production. Here, we theoretically investigate how the variance and autocorrelation length of primary production affect properties of evolved food webs consisting of one autotroph and several heterotrophs.
View Article and Find Full Text PDFCountries generally agree that global greenhouse gas emissions are too high, but prefer other countries reduce emissions rather than reducing their own. The Paris Agreement is intended to solve this collective action problem, but is likely insufficient. One proposed solution is a matching-commitment agreement, through which countries can change each other's incentives by committing to conditional emissions reductions, before countries decide on their unconditional reductions.
View Article and Find Full Text PDFA set of axioms is formulated characterizing ecologically plausible community dynamics. Using these axioms, it is proved that the transients following an invasion into a sufficiently stable equilibrium community by a mutant phenotype similar to one of the community's finitely many resident phenotypes can always be approximated by means of an appropriately chosen Lotka-Volterra model. To this end, the assumption is made that similar phenotypes in the community form clusters that are well-separated from each other, as is expected to be generally the case when evolution proceeds through small mutational steps.
View Article and Find Full Text PDFPlants and vegetation play a critical-but largely unpredictable-role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized.
View Article and Find Full Text PDFAccording to the competitive-exclusion principle, the number n of regulating variables describing a given community dynamics is an upper bound on the number of species (or types or morphs) that can coexist at equilibrium. On occasion, it is possible to reformulate a model with a lower number of regulating variables than appeared in the initial specification. We call the smallest number of such variables the dimension of the environmental feedback, or environmental dimension for short.
View Article and Find Full Text PDFPLoS Comput Biol
January 2020
Spatially extended ecological public goods, such as forests, grasslands, and fish stocks, are at risk of being overexploited by selfish consumers-a phenomenon widely recognized as the 'tragedy of the commons.' The interplay of spatial and ecological dimensions introduces new features absent in non-spatial ecological contexts, such as consumer mobility, local information availability, and strategy evolution through social learning in neighborhoods. It is unclear how these features interact to influence the harvesting and dispersal strategies of consumers.
View Article and Find Full Text PDFThe ecological consequences of habitat loss and fragmentation have been intensively studied on a broad, landscape-wide scale, but have less been investigated on the finer scale of individual habitat patches, especially when considering dynamic turnovers in the habitability of sites. We study changes to individual patches from the perspective of the inhabitant organisms requiring a minimum area for survival. With patches given by contiguous assemblages of discrete habitat sites, the removal of a single site necessarily causes one of the following three elementary local events in the affected patch: splitting into two or more pieces, shrinkage without splitting, or complete disappearance.
View Article and Find Full Text PDFCooperation can be sustained by institutions that punish free-riders. Such institutions, however, tend to be subverted by corruption if they are not closely watched. Monitoring can uphold the enforcement of binding agreements ensuring cooperation, but this usually comes at a price.
View Article and Find Full Text PDFAlmost all animal species undergo metamorphosis, even though empirical data show that this life-history strategy evolved only a few times. Why is metamorphosis so widespread, and why has it evolved? Here we study the evolution of metamorphosis by using a fully size-structured population model in conjunction with the adaptive-dynamics approach. We assume that individuals compete for two food sources; one of these, the primary food source, is available to individuals of all sizes.
View Article and Find Full Text PDFProc Biol Sci
January 2019
Dispersal is a key process for the emergence of social and biological behaviours. Yet, little attention has been paid to dispersal's effects on the evolution of cooperative behaviour in structured populations. To address this issue, we propose two new dispersal modes, parent-preferred and offspring-preferred dispersal, incorporate them into the birth-death update rule, and consider the resultant strategy evolution in the prisoner's dilemma on random-regular, small-world, and scale-free networks, respectively.
View Article and Find Full Text PDFLarge variations in crown shape are observed across the globe, from plants with wide and deep crowns to those with leaves clustered at the top. While there have been advances in the large-scale monitoring of forests, little is known about factors driving variations in crown shape with environmental conditions. Previous theoretical research suggests a gradient in crown shape with latitude, due to the effects of sun angle.
View Article and Find Full Text PDFBody size is a key determinant of mortality risk. In natural populations, a broad range of relationships are observed between body size and mortality, including positive and negative correlations. Previous evolutionary modeling has shown that negatively size-dependent mortality can result in life-history bistability, with early maturation at small size and late maturation at large size representing alternative fitness optima.
View Article and Find Full Text PDFAn organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules.
View Article and Find Full Text PDF