Objectives: Corallium rubrum, the precious red coral, is an octocoral endemic to the western Mediterranean Sea. Like most octocorals, it produces tiny, calcified structures called sclerites. Uniquely, it also produces a completely calcified axial skeleton that is a bright red color.
View Article and Find Full Text PDFOngoing ocean acidification is known to be a major threat to tropical coral reefs. To date, only few studies have evaluated the impacts of natural long-term exposure to low-pH seawater on the chemical regulation and growth of reef-building corals. This work investigated the different responses of the massive Porites coral living at normal (pH ~ 8.
View Article and Find Full Text PDFWith climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean.
View Article and Find Full Text PDFTropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf.
View Article and Find Full Text PDFBackground: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species.
Results: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf.
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes.
View Article and Find Full Text PDFCoral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e.
View Article and Find Full Text PDFHeat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming.
View Article and Find Full Text PDFHealth and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean.
View Article and Find Full Text PDFCoral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored.
View Article and Find Full Text PDFTelomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera.
View Article and Find Full Text PDFIn hermatypic scleractinian corals, photosynthetic fixation of CO and the production of CaCO are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process.
View Article and Find Full Text PDFOcean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown.
View Article and Find Full Text PDFTelomere DNA length is a complex trait controlled by both multiple loci and environmental factors. A growing number of studies are focusing on the impact of stress and stress accumulation on telomere length and the link with survival and fitness in ecological contexts. Here, we investigated the telomere changes occurring in a symbiotic coral, Stylophora pistillata, that has experienced continuous darkness over 6 months.
View Article and Find Full Text PDFOcean acidification (OA) has both detrimental as well as beneficial effects on marine life; it negatively affects calcifiers while enhancing the productivity of photosynthetic organisms. To date, many studies have focused on the impacts of OA on calcification in reef-building corals, a process particularly susceptible to acidification. However, little is known about the effects of OA on their photosynthetic algal partners, with some studies suggesting potential benefits for symbiont productivity.
View Article and Find Full Text PDFCorals build the structural foundation of coral reefs, one of the most diverse and productive ecosystems on our planet. Although the process of coral calcification that allows corals to build these immense structures has been extensively investigated, we still know little about the evolutionary processes that allowed the soft-bodied ancestor of corals to become the ecosystem builders they are today. Using a combination of phylogenomics, proteomics, and immunohistochemistry, we show that scleractinian corals likely acquired the ability to calcify sometime between ∼308 and ∼265 Ma through a combination of lineage-specific gene duplications and the co-option of existing genes to the calcification process.
View Article and Find Full Text PDFBackground: Reef-building corals regularly experience changes in intra- and extracellular H concentrations ([H]) due to physiological and environmental processes. Stringent control of [H] is required to maintain the homeostatic acid-base balance in coral cells and is achieved through the regulation of intracellular pH (pH). This task is especially challenging for reef-building corals that share an endosymbiotic relationship with photosynthetic dinoflagellates (family Symbiodinaceae), which significantly affect the pH of coral cells.
View Article and Find Full Text PDFAging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence.
View Article and Find Full Text PDFGlobal change causes widespread decline of coral reefs. In order to counter the anticipated disappearance of coral reefs by the end of this century, many initiatives are emerging, including creation of marine protected areas (MPAs), reef restoration projects, and assisted evolution initiatives. Such efforts, although critically important, are locally constrained.
View Article and Find Full Text PDFCoral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes.
View Article and Find Full Text PDFThe ubiquitous metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.
View Article and Find Full Text PDFThere are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated.
View Article and Find Full Text PDF