Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt-Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different.
View Article and Find Full Text PDFSporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt-Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrP in peripheral tissues.
View Article and Find Full Text PDFSporadic Creutzfeldt-Jakob disease (sCJD) cases are currently classified according to the methionine/valine polymorphism at codon 129 of the gene and the proteinase K-digested abnormal prion protein (PrP) isoform identified by Western blotting (type 1 or type 2). Converging evidence led to the view that MM/MV1, VV/MV2, and VV1 and MM2 sCJD cases are caused by distinct prion strains. However, in a significant proportion of sCJD patients, both type 1 and type 2 PrP were reported to accumulate in the brain, which raised questions about the diversity of sCJD prion strains and the coexistence of two prion strains in the same patient.
View Article and Find Full Text PDFIn the original publication, part of acknowledgement text was missing. The complete acknowledgement section should read as follows.
View Article and Find Full Text PDFPrions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrP). These abnormal aggregated PrP species multiply in infected cells by recruiting and converting the host PrP protein into new PrP.
View Article and Find Full Text PDFCultured cells are valuable models to study prion infections at the cellular level. Unfortunately, the vast majority of cell lines are resistant to the propagation of prion agents. The rabbit epithelial RK13 cell line is among the few cell lines permissive to prion infection.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40-120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e.
View Article and Find Full Text PDFPrions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits.
View Article and Find Full Text PDFUnlabelled: Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo.
View Article and Find Full Text PDFExosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis.
View Article and Find Full Text PDFCell-to-cell transfer of prions is a crucial step in the spreading of prion infection through infected tissue. At the cellular level, several distinct pathways including direct cell-cell contacts and release of various types of infectious extracellular vesicles have been described that may potentially lead to infection of naïve cells. The relative contribution of these pathways and whether they may vary depending on the prion strain and/or on the infected cell type are not yet known.
View Article and Find Full Text PDFPrion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products.
View Article and Find Full Text PDFThe emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain.
View Article and Find Full Text PDFIt is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components.
View Article and Find Full Text PDFThe dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia.
View Article and Find Full Text PDFDetection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species.
View Article and Find Full Text PDFProtein misfolding is central to the pathogenesis of several neurodegenerative disorders. Among these disorders, prion diseases are unique because they are transmissible. The conversion of the host-encoded GPI-anchored PrP protein into a structurally altered form is crucially associated with the infectious and neurotoxic properties of the resulting abnormal PrP.
View Article and Find Full Text PDFPrion diseases are characterized by deposits of abnormal conformers of the PrP protein. Although large aggregates of proteinase K-resistant PrP (PrP(res)) are infectious, the precise relationships between aggregation state and infectivity remain to be established. In this study, we have fractionated detergent lysates from prion-infected cultured cells by differential ultracentrifugation and ultrafiltration and have characterized a previously unnoticed PrP species.
View Article and Find Full Text PDFMouse bioassay remains the gold standard for determining proof of infectivity, strain type, and infectious titer estimation in prion disease research. The development of an approach using ex vivo cell-based assays remains an attractive alternative, both in order to reduce the use of mice and to hasten results. The main limitation of a cell-based approach is the scarcity of cell lines permissive to infection with natural transmissible spongiform encephalopathy strains.
View Article and Find Full Text PDFBackground: 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases.
Methodology/principal Findings: Here we report the identification of cellular targets of these drugs.
Background: Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans.
Methodology/principal Findings: Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of alpha2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a screen for drugs active in vivo against two different yeast prions using a previously described yeast-based two steps assay.
Due to recent renewal of interest and concerns in prion diseases, a number of cell systems permissive to prion multiplication have been generated in the last years. These include established cell lines, neuronal stem cells and primary neuronal cultures. While most of these models are permissive to experimental, mouse-adapted strains of prions, the propagation of natural field isolates from sheep scrapie and chronic wasting disease has been recently achieved.
View Article and Find Full Text PDFDespite circumstantial evidence that prions can be found extracellularly or at the surface of infected cells, little is known about how these infectious agents spread from cell to cell. In order to gain better insight into this critical issue, this study used two different cell lines (neuroglial MovS and epithelial Rov cells) that have previously been shown to be permissive for ovine prion multiplication. Co-culture of infected cells and uninfected target cells at a ratio of 1 : 9 resulted in total infection of MovS cells within 10 days but not of Rov cell cultures, suggesting that the efficiency of prion dissemination may vary greatly depending on the type of permissive cell.
View Article and Find Full Text PDFPrions are misfolded proteins capable of propagating their altered conformation which are commonly considered as the causative agent of transmissible spongiform encephalopathies, a class of fatal neurodegenerative diseases. Currently, no treatment for prion-based diseases is available. Recently we have developed a rapid, yeast-based, two-step assay to screen for anti-prion drugs [1].
View Article and Find Full Text PDF