Publications by authors named "Didier Pinault"

In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks.

View Article and Find Full Text PDF

During the prodromal phase of schizophrenia with its complex and insidious clinical picture, electroencephalographic recordings detect widespread oscillation disturbances (or oscillopathies) during the wake-sleep cycle. Neural oscillations are electrobiomarkers of the connectivity state within systems. A single-systemic administration of ketamine, a non-competitive NMDA glutamate receptor antagonist, transiently reproduces the oscillopathies with a clinical picture reminiscent of the psychosis prodrome.

View Article and Find Full Text PDF

Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30-80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis.

View Article and Find Full Text PDF

The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in cortical and subcortical structures, including the thalamus. The underlying mechanisms are unknown. The goal of the present study was to determine whether a ketamine-induced psychotic-relevant state disturbs the functional state of the corticothalamic (CT) pathway.

View Article and Find Full Text PDF

Aim: To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions.

Methods: Rats were treated with an intraperitoneal injection of MK-801 [0.08 (low-dose) and 0.

View Article and Find Full Text PDF

Background: The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse.

View Article and Find Full Text PDF

Noncompetitive N-methyl-d-aspartate receptor (NMDAr) antagonists can elicit many of the symptoms observed in schizophrenia in healthy humans, and induce a behavioural phenotype in animals relevant to psychosis. These compounds also elevate the power and synchrony of gamma (γ) frequency (30-80 Hz) neural oscillations. Acute doses of antipsychotic medications have been shown to reduce ongoing γ power and to inhibit NMDAr antagonist-mediated psychosis-like behaviour in rodents.

View Article and Find Full Text PDF

Objective: Evidence from animal and human studies indicates that epilepsy can affect cardiac function, although the molecular basis of this remains poorly understood. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate pacemaker activity and modulate cellular excitability in the brain and heart, with altered expression and function associated with epilepsy and cardiomyopathies. Whether HCN expression is altered in the heart in association with epilepsy has not been investigated previously.

View Article and Find Full Text PDF

A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG.

View Article and Find Full Text PDF

Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine in vivo the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons.

View Article and Find Full Text PDF

Purpose:   The origin of bilateral synchronous spike-and-wave discharges (SWDs) that underlie absence seizures has been widely debated. Studies in genetic rodent models suggest that SWDs originate from a restricted region in the somatosensory cortex. The properties of this initiation site remain unknown.

View Article and Find Full Text PDF

Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive.

View Article and Find Full Text PDF

A single non-anaesthetic dose of ketamine, a non-competitive NMDA receptor (NMDAR) antagonist with hallucinogenic properties, induces cognitive impairment and psychosis, and aggravates schizophrenia symptoms in patients. In conscious rats an equivalent dose of ketamine induces key features of animal models of acute psychosis, including hyperlocomotor activity, deficits in prepulse inhibition and gating of auditory evoked potentials, and concomitantly increases the power of ongoing spontaneously occurring gamma (30-80 Hz) oscillations in the neocortex. This study investigated whether NMDAR antagonist-induced aberrant gamma oscillations could be modulated by acute treatment with typical and atypical antipsychotic drugs.

View Article and Find Full Text PDF

Thalamus abnormalities are common in neurological and psychiatric illnesses. Therefore, it is essential to understand the properties of the thalamus-related networks. The thalamic reticular nucleus (TRN) is a thin GABAergic layer interface strategically located between the thalamus and the neocortex.

View Article and Find Full Text PDF

The incidence of psychosis is increased in people with epilepsy, including idiopathic generalized epilepsies. To study the biological basis for this co-morbidity, we compared GAERS, a genetic rat model of absence epilepsy, to non-epileptic control rats (NEC). Mature, 14-week old GAERS showed enhanced amphetamine-induced locomotor hyperactivity - a feature also present in young (6-week old) GAERS prior to epilepsy onset.

View Article and Find Full Text PDF

Background: The psychotomimetics ketamine and MK-801, non-competitive NMDA receptor (NMDAr) antagonists, induce cognitive impairment and aggravate schizophrenia symptoms. In conscious rats, they produce an abnormal behavior associated with a peculiar brain state characterized by increased synchronization in ongoing gamma (30-80 Hz) oscillations in the frontoparietal (sensorimotor) electrocorticogram (ECoG). This study investigated whether NMDAr antagonists-induced aberrant gamma oscillations are correlated with locomotion and dependent on hyperlocomotion-related sensorimotor processing.

View Article and Find Full Text PDF

Background: Single subanesthetic doses of ketamine, a non-competitive NMDA receptor (NMDAr) antagonist, induce cognitive impairment, schizophreniform psychosis, hallucinations, and exacerbate schizophrenia symptoms. The neuronal mechanisms underlying transient disruption in NMDAr function are unknown. Disorders of cognition-related coherences of gamma frequency (30-80 Hz) oscillations between cortical areas are a major functional abnormality in schizophrenic patients.

View Article and Find Full Text PDF

The zona incerta (ZI) is at the crossroad of almost all major ascending and descending fiber tracts and targets numerous brain centers from the thalamus to the spinal cord. Effective ascending drive of ZI cells has been described, but the role of descending cortical signals in patterning ZI activity is unknown. Cortical control over ZI function was examined during slow cortical waves (1-3 Hz), paroxysmal high-voltage spindles (HVSs), and 5-9 Hz oscillations in anesthetized rats.

View Article and Find Full Text PDF

Aberrant function of pacemaker currents (Ih), carried by hyperpolarization-activated cation non-selective (HCN) channels, affects neuronal excitability and accompanies epilepsy, but its distinct roles in epileptogenesis and chronic epilepsy are unclear. We probed Ih function and subunit composition during both pre- and chronically epileptic stages in thalamocortical (TC) neurones of the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). Voltage gating of Ih was unaltered in mature somatosensory TC cells, both in vivo and in vitro.

View Article and Find Full Text PDF

Absence-related spike-and-wave discharges (SWDs) occur in the thalamocortical system during quiet wakefulness or drowsiness. In feline generalized penicillin epilepsy, SWDs develop from sleep spindles. In contrast, in genetic absence epilepsy rats from Strasbourg (GAERS), SWDs develop from wake-related 5-9 Hz oscillations, which are distinct from spindle oscillations (7-15 Hz).

View Article and Find Full Text PDF

Standard large craniotomies induce undesirable brain motions during intracellular recordings in whole animal preparations. Practically all of the papers available in the literature outline a number of specific methodological approaches designed to avoid this inconvenience. Our study describes a new craniotomy-duratomy, which consists of the maintenance of a thin bone membrane and dura mater surrounding the small hole opened for lowering the recording micropipette.

View Article and Find Full Text PDF

The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each of these models has its particular strengths and limitations, and the validity of findings from these models for the human condition cannot be assumed.

View Article and Find Full Text PDF

On the basis of theoretical, anatomical, psychological and physiological considerations, Francis Crick (1984) proposed that, during selective attention, the thalamic reticular nucleus (TRN) controls the internal attentional searchlight that simultaneously highlights all the neural circuits called on by the object of attention. In other words, he submitted that during either perception, or the preparation and execution of any cognitive and/or motor task, the TRN sets all the corresponding thalamocortical (TC) circuits in motion. Over the last two decades, behavioural, electrophysiological, anatomical and neurochemical findings have been accumulating, supporting the complex nature of the TRN and raising questions about the validity of this speculative hypothesis.

View Article and Find Full Text PDF

In Genetic Absence Epilepsy Rats from Strasbourg (GAERS), generalized spike-and-wave (SW) discharges (5-9 SW s(-1)) develop during quiet immobile wakefulness from a natural, medium-voltage, 5-9 Hz rhythm. This study examines the spatio-temporal dynamics of cellular interactions in the somatosensory thalamocortical system underlying the generation of normal and epileptic 5-9 Hz oscillations. Paired single-unit and multi-unit recordings between the principal elements of this circuit and intracellular recordings of thalamic, relay and reticular, neurones were conducted in neuroleptanalgesied GAERS and control, non-epileptic, rats.

View Article and Find Full Text PDF