Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPbBiO electrodes.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
November 2020
The title compound, thallium magnesium trichloride, has been identified as a scintillator with both moderate gamma-stopping power and moderate light yield. Knowledge of its crystal structure is needed for further development. This work determines the crystal structure of TlMgCl to be hexa-gonal 6/ (No.
View Article and Find Full Text PDFEnergy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution.
View Article and Find Full Text PDFNeutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed ( while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques.
View Article and Find Full Text PDFWe present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak power for 12 ns pulses at 1 kHz in the Q-switched regime.
View Article and Find Full Text PDF