Publications by authors named "Didier Paul"

Background: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. This study aimed to evaluate the performance and utility of a new plastic scintillating optical fiber dosimeter for CBCT dosimetric quality assurance (QA) applications before a potential application in patient composite CBCT dosimetry.

View Article and Find Full Text PDF

Background: While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, the radiation-induced risks must be documented. We investigated the impact of the cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human skin fibroblasts and brain astrocytes exposed to current head CT scan conditions.

Method: Nine human primary fibroblasts and four human astrocyte cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard head CT scan exam using adapted phantoms.

View Article and Find Full Text PDF

Background: While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, there is increasing evidence that the potential radiation-induced risks must be documented. We investigated the impact of cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human fibroblasts and mammary epithelial cells exposed to current chest CT scan conditions.

Method: Twelve human primary fibroblasts and four primary human mammary epithelial cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard chest CT scan exam using adapted phantoms.

View Article and Find Full Text PDF

In order to simulate micromachining of Ti-Nb medical devices produced in situ by selective laser melting, it is necessary to use constitutive models that allow one to reproduce accurately the material behavior under extreme loading conditions. The identification of these models is often performed using experimental tension or compression data. In this work, compression tests are conducted to investigate the impact of the loading conditions and the laser-based powder bed fusion (LB-PBF) building directions on the mechanical behavior of β-Ti42Nb alloy.

View Article and Find Full Text PDF