Although the introduction of rotavirus vaccines has substantially contributed to the reduction in rotavirus morbidity and mortality, concerns persist about the re-emergence of variant strains that might alter vaccine effectiveness in the long term. The G9 strains re-emerged in Africa during the mid-1990s and have more recently become predominant in some countries, such as Ghana and Zambia. In Rwanda, during the 2011 to 2015 routine surveillance period, G9P[8] persisted during both the pre- and post-vaccine periods.
View Article and Find Full Text PDFAfrica has a high level of genetic diversity of rotavirus strains, which is suggested to be a possible reason contributing to the suboptimal effectiveness of rotavirus vaccines in this region. One strain that contributes to this rotavirus diversity in Africa is the G8P[4]. This study aimed to elucidate the entire genome and evolution of Rwandan G8P[4] strains.
View Article and Find Full Text PDFBackground: Worldwide, bacterial bloodstream infections (BSIs) constitute an important cause of morbidity and mortality in clinical settings. Due to the limited laboratory facilities in sub-Saharan Africa, poor diagnosis of BSIs results in poor clinical outcomes and leads to a risk of antimicrobial resistance. The present work was carried out to describe the microbiological features of BSIs using the data collected from Centre Hospitalier Universitaire de Kigali (CHUK).
View Article and Find Full Text PDFRwanda was the first low-income African country to introduce RotaTeq vaccine into its Expanded Programme on Immunization in May 2012. To gain insights into the overall genetic make-up and evolution of Rwandan G1P[8] strains pre- and post-vaccine introduction, rotavirus positive fecal samples collected between 2011 and 2016 from children under the age of 5 years as part of ongoing surveillance were genotyped with conventional RT-PCR based methods and whole genome sequenced using the Illumina MiSeq platform. From a pool of samples sequenced (n = 158), 36 were identified as G1P[8] strains (10 pre-vaccine and 26 post-vaccine), of which 35 exhibited a typical Wa-like genome constellation.
View Article and Find Full Text PDF