Publications by authors named "Didier Job"

Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP), a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice.

View Article and Find Full Text PDF

Localization of CAP-Gly proteins such as CLIP170 at microtubule+ends results from their dual interaction with α-tubulin and EB1 through their C-terminal amino acids -EEY. Detyrosination (cleavage of the terminal tyrosine) of α-tubulin by tubulin-carboxypeptidase abolishes CLIP170 binding. Can detyrosination affect EB1 and thus regulate the presence of CLIP170 at microtubule+ends as well? We developed specific antibodies to discriminate tyrosinated vs detyrosinated forms of EB1 and detected only tyrosinated EB1 in fibroblasts, astrocytes, and total brain tissue.

View Article and Find Full Text PDF

Alpha tubulin comprises a C-terminal tyrosine residue, which is subject to cyclic removal from the peptide chain by a still uncharacterized carboxypeptidase and re-addition to the chain by a tubulin tyrosine ligase. We have shown in different animal or human models that the presence or absence of the tyrosine residue had dramatic consequences for both tumor progression and neuronal organization. In cells, tubulin detyrosination impairs the proper localization of CAP-Gly proteins at microtubule + end, compromises the activity of microtubule-depolymerizing motors of the Kinesin 13 family, and favors both spastin microtubule-severing activity and kinesin 1 processivity.

View Article and Find Full Text PDF

Background: STOP (Stable Tubulin-Only Polypeptide) null mice show behavioral deficits, impaired synaptic plasticity, decrease in synaptic vesicular pools and disturbances in dopaminergic transmission, and are considered a neurodevelopmental model of schizophrenia. Olfactory neurons highly express STOP protein and are continually generated throughout life. Experimentally-induced loss of olfactory neurons leads to epithelial regeneration within two months, providing a useful model to evaluate the role played by STOP protein in adult olfactory neurogenesis.

View Article and Find Full Text PDF

Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data.

View Article and Find Full Text PDF

In cells, stable microtubules (MTs) are covalently modified by a carboxypeptidase, which removes the C-terminal Tyr residue of alpha-tubulin. The significance of this selective detyrosination of MTs is not understood. In this study, we report that tubulin detyrosination in fibroblasts inhibits MT disassembly.

View Article and Find Full Text PDF

Background: During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood.

Methodology/findings: Here, we have dissected the role of a post-translational modification of the last amino acid of the alpha-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL(-/-)) through in vivo, ex vivo and in vitro analyses.

View Article and Find Full Text PDF

Bik1p is the budding yeast counterpart of the CLIP-170 family of microtubule plus-end tracking proteins, which are required for dynein localization at plus ends and dynein-dependent spindle positioning. CLIP-170 proteins make up a CAP-Gly microtubule-binding domain, which sustains their microtubule plus-end tracking behaviour. However, in yeast, Bik1p travels towards plus ends as a cargo of the plus-end-directed kinesin Kip2p.

View Article and Find Full Text PDF

The microtubule-associated stable tubule only polypeptide (STOP) protein plays a key-role in neuron architecture and synaptic plasticity. Recent studies suggest that schizophrenia is associated with alterations in the synaptic connectivity. Mice invalidated for the STOP gene display phenotype reminiscent of some schizophrenic-like symptoms, such as behavioral disturbances, dopamine (DA) hyper-reactivity, and possible hypoglutamatergia, partly improved by antipsychotic treatment.

View Article and Find Full Text PDF

Overt schizophrenia is preceded by a prodromal phase during which juvenile patients display attenuated schizophrenia-related symptoms. Here, we have looked for evidence of a prodromal phase in juvenile STOP null mice, which, during adulthood, imitate features of schizophrenia. We have principally examined locomotor activity, which is abnormal in adult STOP null mice, and its apparent relationship with perturbed glutamatergic and dopaminergic transmission.

View Article and Find Full Text PDF

Mice deficient in the microtubule stabilizing protein STOP (stable tubule only polypeptide) show synaptic plasticity anomalies in hippocampus, dopamine hyper-reactivity in the limbic system and severe behavioral deficits. Some of these disturbances are alleviated by long-term antipsychotic treatment. Therefore, this mouse line represents a pertinent model for some aspects of schizophrenia symptomatology.

View Article and Find Full Text PDF

Post-translational arginylation consists of the covalent union of an arginine residue to a Glu, Asp, or Cys amino acid at the N-terminal position of proteins. This reaction is catalyzed by the enzyme arginyl-tRNA protein transferase. Using mass spectrometry, we have recently demonstrated in vitro the post-translational incorporation of arginine into the calcium-binding protein calreticulin (CRT).

View Article and Find Full Text PDF

Stable tubule-only polypeptide (STOP) proteins are a family of microtubule associated proteins (MAPs) important in microtubule stabilization. Data indicating a role for microtubules in synaptic function has come from studies of the STOP null mouse, which exhibits synaptic deficits, in association with behavioural changes that are alleviated by antipsychotic treatment. These findings suggested that STOP mutant mice may be useful in studies of synaptic function, and could be especially relevant to schizophrenia, postulated to be a disorder of the synapse.

View Article and Find Full Text PDF

Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to alpha-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers.

View Article and Find Full Text PDF

Neuronal microtubules are stabilized by two calmodulin-regulated microtubule-associated proteins, E-STOP and N-STOP, which when suppressed in mice induce severe synaptic and behavioral deficits. Here we show that mature neurons also contain a 21-kDa STOP-like protein, SL21, which shares calmodulin-binding and microtubule-stabilizing homology domains with STOP proteins. Accordingly, in different biochemical or cellular assays, SL21 has calmodulin binding and microtubule stabilizing activity.

View Article and Find Full Text PDF

Background: Recent data suggest that cytoskeletal defects may play a role in schizophrenia. We previously imitated features of schizophrenia in an animal model by disrupting gene coding for a microtubule-associated protein called STOP. STOP-null mice display synaptic defects in glutamatergic neurons, hyper-dopaminergy, and severe behavioral disorders.

View Article and Find Full Text PDF

Arginine can be post-translationally incorporated from arginyl-tRNA into the N-terminus of soluble acceptor proteins in a reaction catalyzed by arginyl-tRNA protein transferase. In the present study, several soluble rat brain proteins that accepted arginine were identified after arginine incorporation by two dimensional electrophoresis and mass spectrometry. They were identified as: contrapsin-like protease inhibitor-3, alpha-1-antitrypsin, apolipoprotein E, hemopexin, calreticulin and apolipoprotein A-I.

View Article and Find Full Text PDF

STOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments.

View Article and Find Full Text PDF

The activation of the cyclin-dependent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubule- or tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates beta-tubulin both in vitro and in vivo.

View Article and Find Full Text PDF

Purpose: To evaluate whether static high magnetic fields (HMFs), in the range of 10-17 T, affect the cytoskeleton and cell organization in different types of mammalian cells, including fibroblasts, epithelial cells, and differentiating neurons.

Materials And Methods: Cells were exposed to HMF for 30 or 60 minutes and subsequently assessed for viability. Cytoskeleton arrays and focal adhesions were visualized using immunofluorescence microscopy.

View Article and Find Full Text PDF

Schizophrenia is a chronic and debilitating disease which is thought to arise from a neuro-developmental disorder. Both the stable tubule-only polypeptide (STOP) protein and the N-methyl-D-aspartate (NMDA) NR1 subunit are involved in neuronal development and physiology. It has therefore been postulated that transgenic mice lacking either the STOP or the NMDAR1 gene would show a 'schizophrenic-like' phenotype.

View Article and Find Full Text PDF

Neuroleptics are thought to exert their anti-psychotic effects by counteracting a hyper-dopaminergic transmission. Here, we have examined the dopaminergic status of STOP (stable tubule only polypeptide) null mice, which lack a microtubule-stabilizing protein and which display neuroleptic-sensitive behavioural disorders. Dopamine transmission was investigated using both behavioural analysis and measurements of dopamine efflux in different conditions.

View Article and Find Full Text PDF

Tubulin is subject to a special cycle of detyrosination/tyrosination in which the C-terminal tyrosine of alpha-tubulin is cyclically removed by a carboxypeptidase and readded by a tubulin-tyrosine-ligase (TTL). This tyrosination cycle is conserved in evolution, yet its physiological importance is unknown. Here, we find that TTL suppression in mice causes perinatal death.

View Article and Find Full Text PDF

MCAK is a member of the kinesin-13 family of microtubule (MT)-depolymerizing kinesins. We show that the potent MT depolymerizer MCAK tracks (treadmills) with the tips of polymerizing MTs in living cells. Tip tracking of MCAK is inhibited by phosphorylation and is dependent on the extreme COOH-terminal tail of MCAK.

View Article and Find Full Text PDF