J Opt Soc Am A Opt Image Sci Vis
August 2019
The performance of an acousto-optical tunable filter (AOTF) depends on several key parameters, such as the diffraction efficiency and the applied RF signal at the external network of the transducer. The latter has a specific bandwidth in which its efficiency is high. The goal of this paper is to experimentally investigate the relationship between the electrically matched RF bandwidth and the achieved diffraction efficiency, especially at the edges of the RF frequency band.
View Article and Find Full Text PDFWe describe a new spectral imaging instrument using a TeO(2) acousto-optical tunable filter (AOTF) operating in the visible domain (450-900 nm). It allows for fast (~1 second), monochromatic (FWHM ranges from 0.6 nm at 450 nm to 3.
View Article and Find Full Text PDFSolar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus's atmosphere above the cloud layer, highlighting the vertical distribution of gases.
View Article and Find Full Text PDFThe aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present.
View Article and Find Full Text PDFWWe present a general analysis of the error budget in the spectral inversion of atmospheric radiometric measurements. By focussing on the case of an occultation experiment, we simplify the problem through a reduced number of absorbers in a linearized formalism. However, our analysis is quite general and applies to many other situations.
View Article and Find Full Text PDF