Publications by authors named "Didier Debroas"

Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as and . Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea.

View Article and Find Full Text PDF

The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake.

View Article and Find Full Text PDF
Article Synopsis
  • High-throughput sequencing has revealed a vast variety of microbial eukaryotes in aquatic ecosystems, particularly in freshwater lakes, but their roles in food webs are still not well understood.
  • Research conducted in Lake Pavin, France, utilized metabarcoding and metatranscriptomic data to identify functional groups of these microbial eukaryotes and their metabolic activities across different environmental conditions.
  • Findings indicated significant microbial diversity, with numerous saprotrophs involved in nutrient cycling and seasonal variations affecting types of microbial eukaryotes, particularly highlighting the impact of water mixing on both beneficial and parasitic organisms.
View Article and Find Full Text PDF

In environmental metagenomic experiments, a very high proportion of the microbial sequencing data (> 70%) remains largely unexploited because rare and closely related genomes are missed in short-read assemblies. The identity and the potential metabolisms of a large fraction of natural microbial communities thus remain inaccessible to researchers. The purpose of this study was to explore the genomic content of unassembled metagenomic data and test their level of novelty.

View Article and Find Full Text PDF

Freshwater is a critical resource for human survival but severely threatened by anthropogenic activities and climate change. These changes strongly impact the abundance and diversity of the microbial communities which are key players in the functioning of these aquatic ecosystems. Although widely documented since the emergence of high-throughput sequencing approaches, the information on these natural microbial communities is scattered among thousands of publications and it is therefore difficult to investigate the temporal dynamics and the spatial distribution of microbial taxa within or across ecosystems.

View Article and Find Full Text PDF

Plasmids are widely involved in the dissemination of characteristics within bacterial communities. Their genomic content can be assessed by high-throughput sequencing of the whole plasmid fraction of an environment, the plasmidome. In this study, we analyzed the plasmidome of a biofilm formed in the effluents of the teaching hospital of Clermont-Ferrand (France).

View Article and Find Full Text PDF

Microsporidia are a large group of obligate intracellular eukaryotic parasites related to Fungi. Recent studies suggest that their diversity has been greatly underestimated and little is known about their hosts other than metazoans, and thus about their impact on the communities at the base of the food web. In this work, we therefore studied the diversity of Microsporidia over one year and identified potential new hosts in small-sized fractions (<150 μm) in a lake ecosystem using a metabarcoding approach coupled with co-occurrence networks and tyramide signal amplification-fluorescent in situ hybridization.

View Article and Find Full Text PDF

Microsporidia are obligate intracellular eukaryotic parasites known to parasitize many species of the animal kingdom as well as some protists. However, their diversity is underestimated, in part as a consequence of the failure of 'universal' primers to detect them in metabarcoding studies. Besides, due to the inconsistency between taxonomy and phylogenetic data, available databases may assign incorrectly sequences obtained with high-throughput sequencing.

View Article and Find Full Text PDF

The Archaea Marine Group II (MGII) is widespread in the world's ocean where it plays an important role in the carbon cycle. Despite recent discoveries on the group's metabolisms, the ecology of this newly proposed order (Candidatus Poseidoniales) remains poorly understood. Here we used a combination of time-series metagenome-assembled genomes (MAGs) and high-frequency 16S rRNA data from the NW Mediterranean Sea to test if the taxonomic diversity within the MGIIb family (Candidatus Thalassarchaeaceae) reflects the presence of different ecotypes.

View Article and Find Full Text PDF

Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed microbial diversity in the Siridao solar salterns of Goa, India, during two salt harvesting phases using high-throughput sequencing of 16S rRNA genes.
  • It found that Archaea shifted from sediments to brine while Bacteria moved in the opposite direction as salinity increased, with Archaea remaining prevalent even at lower salinity levels.
  • The research concluded that Archaea are more resilient to salinity changes than Bacteria, as many bacterial groups were more phase-specific and sensitive to these fluctuations.
View Article and Find Full Text PDF

Long-term time series have provided evidence that anthropogenic pressures can threaten lakes. Yet it remains unclear how and the extent to which lake biodiversity has changed during the Anthropocene, in particular for microbes. Here, we used DNA preserved in sediments to compare modern micro-eukaryotic communities with those from the end of the 19th century, i.

View Article and Find Full Text PDF

Plasmids play important roles in microbial evolution and also in the spread of antibiotic resistance. Plasmid sequences are extensively studied from clinical isolates but rarely from the environment with a metagenomic approach focused on the plasmid fraction referred to as the plasmidome. A clear challenge in this context is to define a workflow for discriminating plasmids from chromosomal contaminants existing in the plasmidome.

View Article and Find Full Text PDF

Honeybees ensure a key ecosystem service by pollinating many agricultural crops and wild plants. However, in the past few decades, managed bee colonies have been declining in Europe and North America. Researchers have emphasized both parasites and pesticides as the most important factors.

View Article and Find Full Text PDF

Honeybees ensure a key ecosystemic service by pollinating many agricultural crops and wild plants. However, since few decades, managed bee colonies have declined worldwide. This phenomenon is considered to be multifactorial, with a strong emphasis on both parasites and pesticides.

View Article and Find Full Text PDF
Article Synopsis
  • A year-long pilot study (October 2014-2015) monitored wastewater to analyze global enterovirus (EV) infections in an urban community using ultra-deep sequencing.
  • The study revealed a significant diversity of 48 different EV types, organized into three taxonomic species (A, B, and C), with many types found circulating silently in the community.
  • Wastewater monitoring can supplement clinical surveillance, helping identify diseases associated with non-polio EVs and aiding in poliomyelitis eradication efforts.
View Article and Find Full Text PDF

Antibiotic resistance is a rapidly growing health care problem globally and causes many illnesses and deaths. Bacteria can acquire antibiotic resistance genes (ARGs) by horizontal transfer mediated by mobile genetic elements, where the role of phages in their dissemination in natural environments has not yet been clearly resolved. From metagenomic studies, we showed that the mean proportion of predicted ARGs found in prophages (0-0.

View Article and Find Full Text PDF

Planktonic Archaea have been detected in all the world's oceans and are found from surface waters to the deep sea. The two most common Archaea phyla are Thaumarchaeota and Euryarchaeota. Euryarchaeota are generally more common in surface waters, but very little is known about their ecology and their potential metabolisms.

View Article and Find Full Text PDF

An integrative multi-omics approach allowed monthly variations for a year of the surface metabolome and the epibacterial community of the Mediterranean Phaeophyceae Taonia atomaria to be investigated. The LC-MS-based metabolomics and 16S rDNA metabarcoding data sets were integrated in a multivariate meta-omics analysis (multi-block PLS-DA from the MixOmic DIABLO analysis) showing a strong seasonal covariation (Mantel test: p < 0.01).

View Article and Find Full Text PDF

High-throughput sequencing has given new insights into aquatic fungal community ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly available, we investigated fungal richness and taxonomic composition among 25 lakes and four rivers. We used a single pipeline to process the reads from raw data to the taxonomic affiliation.

View Article and Find Full Text PDF

Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle.

View Article and Find Full Text PDF

Marine microbes have tremendous diversity, but a fundamental question remains unanswered: why are there so many microbial species in the sea? The idea of functional redundancy for microbial communities has long been assumed, so that the high level of richness is often explained by the presence of different taxa that are able to conduct the exact same set of metabolic processes and that can readily replace each other. Here, we refute the hypothesis of functional redundancy for marine microbial communities by showing that a shift in the community composition altered the overall functional attributes of communities across different temporal and spatial scales. Our metagenomic monitoring of a coastal northwestern Mediterranean site also revealed that diverse microbial communities harbor a high diversity of potential proteins.

View Article and Find Full Text PDF

BackgroundHuman enteric viruses are resistant in the environment and transmitted via the faecal-oral route. Viral shedding in wastewater gives the opportunity to track emerging pathogens and study the epidemiology of enteric infectious diseases in the community. The aim of this study was to monitor the circulation of enteric viruses in the population of the Clermont-Ferrand area (France) by analysis of urban wastewaters.

View Article and Find Full Text PDF