Publications by authors named "Didier Combes"

Optical sensors excel in performance but face efficacy challenges when submerged due to potential surface colonization, leading to signal deviation. This necessitates robust solutions for sustained accuracy. Protein and microorganism adsorption on solid surfaces is crucial in antibiofilm studies, contributing to conditioning film and biofilm formation.

View Article and Find Full Text PDF

In perennial grasses, the reproductive development consists of major phenological stages which highly determine the seasonal variations of grassland biomass production in terms of quantity and quality. The reproductive development is regulated by climatic conditions through complex interactions subjected to high genetic diversity. Understanding these interactions and their impact on plant development and growth is essential to optimize grassland management and identify the potential consequences of climate change.

View Article and Find Full Text PDF

Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field.

View Article and Find Full Text PDF

Reduced blue light irradiance is known to enhance leaf elongation rate (LER) in grasses, but the mechanisms involved have not yet been elucidated. We investigated whether leaf elongation response to reduced blue light could be mediated by stomata-induced variations of plant transpiration. Two experiments were carried out on tall fescue in order to monitor LER and transpiration under reduced blue light irradiance.

View Article and Find Full Text PDF

Backgrounds And Aims: A major challenge when supporting the development of intercropping systems remains the design of efficient species mixtures. The ecological processes that sustain overyielding of legume-based mixtures compared to pure crops are well known, but their links to plant traits remain to be unravelled. A common assumption is that enhancing trait divergence among species for resource acquisition when assembling plant mixtures should increase species complementarity and improve community performance.

View Article and Find Full Text PDF

Background And Aims: Because functional-structural plant models (FSPMs) take plant architecture explicitly into consideration, they constitute a promising approach for unravelling plant-plant interactions in complex canopies. However, existing FSPMs mainly address competition for light. The aim of the present work was to develop a comprehensive FSPM accounting for the interactions between plant architecture, environmental factors and the metabolism of carbon (C) and nitrogen (N).

View Article and Find Full Text PDF

The estimation of glycoalkaloids in the flesh of different types of decayed potatoes was evaluated. The results showed that turned green and also sprouting or rotting potato flesh contain high amounts of toxic solanine and chaconine, exceeding by 2-5-fold the recommended limit, and ranging from 2578±86mg/kg to 5063±230mg/kg of dry weight potato flesh. For safety consideration, these decayed potatoes should be systematically set aside.

View Article and Find Full Text PDF

Background: Genetic studies and breeding of agricultural crops frequently involve phenotypic characterization of large collections of genotypes grown in field conditions. These evaluations are typically based on visual observations and manual (destructive) measurements. Robust image capture and analysis procedures that allow phenotyping large collections of genotypes in time series during developmental phases represent a clear advantage as they allow non-destructive monitoring of plant growth and performance.

View Article and Find Full Text PDF

Background And Aims: Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat-pea (Triticum aestivum-Pisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed.

View Article and Find Full Text PDF

Cereal-legume intercrops represent a promising way of combining high productivity and agriculture sustainability. The benefits of cereal-legume mixtures are highly affected by species morphology and functioning, which determine the balance between competition and complementarity for resource acquisition. Studying species morphogenesis, which controls plant architecture, is therefore of major interest.

View Article and Find Full Text PDF

Background And Aims: Light interception is a key factor driving the functioning of wheat-pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat-pea mixtures.

View Article and Find Full Text PDF

Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L.

View Article and Find Full Text PDF

Background And Aims: Most studies dealing with light partitioning in intercropping systems have used statistical models based on the turbid medium approach, thus assuming homogeneous canopies. However, these models could not be directly validated although spatial heterogeneities could arise in such canopies. The aim of the present study was to assess the ability of the turbid medium approach to accurately estimate light partitioning within grass-legume mixed canopies.

View Article and Find Full Text PDF

Background And Aims: The productivity and stability of grazed grassland rely on dynamic interactions between the sward and the animal. The descriptions of the sward canopies by standard 2-D representations in studies of animal-sward interactions at the bite scale need to be improved to account for the effect of local canopy heterogeneity on bite size and regrowth ability. The aim of this study was to assess a methodology of 3-D digitized canopies in order to understand the balance between bite mass and light interception by the residual sward.

View Article and Find Full Text PDF

Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange.

View Article and Find Full Text PDF

Spherical microbeads functionalized with two types of chemical groups (NH(2), OH) were chosen as a simplified bacterial model, in order to elucidate the role of macromolecular interactions between specific biopolymers and 316 L stainless steel, in the frame of biofilm formation in the marine environment. NH(2) microbeads were used in their native form or after covalent binding to BSA or different representative poly-amino acids. OH microbeads were used in their native form.

View Article and Find Full Text PDF

The canopy structure of grasslands is a major determinant of their use-value, as it affects the quantity and quality of the forage removed when mowed or grazed. The structure of this canopy is determined by individual plant architecture, which is highly sensitive to both environmental variations and management practices such as cutting regimes. In the case of perennial ryegrass (Lolium perenne L.

View Article and Find Full Text PDF

Light is one of the most important components to be included in functional-structural plant models that simulate the biophysical processes, such as photosynthesis, evapotranspiration and photomorphogenesis, involved in plant growth and development. In general, in these models, light is treated using a turbid medium approach in which radiation attenuation is described by the Beer-Lambert law. In the present study, we assessed the hypothesis of leaf random dispersion in the Beer-Lambert law at the whole-canopy, horizontal-layer and local scales.

View Article and Find Full Text PDF

Light controls bud burst in many plants, which subsequently affects their architecture. Nevertheless, very little is known about this photomorphogenic process. This study ascertains the effects of light on bud burst and on two of its components, i.

View Article and Find Full Text PDF

It is widely recognized that the red:far-red ratio (zeta) acts as a signal that triggers plant morphogenesis. New insights into photomorphogenesis have been gained through experiments in controlled environments. Extrapolation of such results to field conditions requires characterization of the zeta signal perceived by plant organs within canopies.

View Article and Find Full Text PDF

1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies.

View Article and Find Full Text PDF

A simplified method for building three-dimensional (3D) mock-ups of peach trees is presented. The method combines partial digitizing of tree structure with reconstruction rules for non-digitized organs. Reconstruction was applied at two scales: leaves on current-year shoots (CYS) and shoots on 1-year-old shoots (OYOS).

View Article and Find Full Text PDF

The influence of polyhydric alcohols (sorbitol, xylitol, erythritol, glycerol) on the thermal stability of Rhizomucor miehei lipase has been studied at high hydrostatic pressure (up to 500 MPa). In the absence of additives, a protective effect (PE) (the ratio between the residual activities determined at 480 MPa for the enzyme in the presence or absence of polyhydric alcohols) of low-applied pressures (from 50 MPa to 350 MPa) against thermal deactivations (at 50 degrees C and 55 degrees C) has been noticed. In the presence of additives, a strong correlation between PE and the total hydroxyl group concentration has been obtained, for the first time, under treatments of combining denaturing temperatures and high hydrostatic pressures.

View Article and Find Full Text PDF

ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1.

View Article and Find Full Text PDF

Both high temperature and high hydrostatic pressure induce irreversible deactivation of enzymes. They enable the enzyme's thermodynamic parameters to be determined and are used to study the mechanisms involved in biochemical systems. The effect of these two factors on the stability of Rhizomucor miehei lipase have been investigated.

View Article and Find Full Text PDF