Human extended pluripotent stem cell (hEPS) is a novel type of pluripotent stem cell, which possesses bi-potency towards both embryonic and extraembryonic lineages. Here, we generated a hEPS cell line (hEPS1-iCas9-B) from the cell line named hEPS1, carrying a doxycycline-inducible Cas9 expression cassette along with a constitutive reverse tetracycline transactivator (M2rtTA) expression cassette at the AAVS1 locus, thus we could efficiently generate genetically modified hEPS for studies. This cell lined remained self-renewal, differentiation potential and normal karyotype.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2022
2,4,6-Tribromophenol (TBP, CAS No. 118-79-6), the most widely produced brominated phenol, is frequently detected in environmental components. The detection of TBP in human bodies has earned great concerns about its adverse effects on human beings, especially for early embryonic development.
View Article and Find Full Text PDFBackground: The expression of suppressor of cytokine signaling 3 (SOCS3) was induced by interleukin-6 (IL-6) in preterm placental tissues. However, its role in IL-6 induced apoptosis of trophoblast cells derived from preterm placental tissues remains to be elucidated.
Methods: Primary cytotrophoblasts from human preterm placental tissues were used to stably knock down and overexpress the level of SOCS3 by corresponding lentiviral vectors and the expression of SOCS3 was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot.
2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are a new class of halophenolic disinfection byproducts (DBPs) which have been widely detected in drinking water. In recent years, their developmental toxicity has got increasing public attention due to their potential toxic effects on embryo development towards lower organisms. Nonetheless, the application of human embryos for embryonic toxicologic studies is rendered by ethical and moral considerations, as well as the technical barrier to sustaining normal development beyond a few days.
View Article and Find Full Text PDFOf all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues.
View Article and Find Full Text PDFCell Stem Cell
October 2014
Conventional embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) derived from primates resemble mouse epiblast stem cells, raising an intriguing question regarding whether the naive pluripotent state resembling mouse embryonic stem cells (mESCs) exists in primates and how to capture it in vitro. Here we identified several specific signaling modulators that are sufficient to generate rhesus monkey fibroblast-derived iPSCs with the features of naive pluripotency in terms of growth properties, gene expression profiles, self-renewal signaling, X-reactivation, and the potential to generate cross-species chimeric embryos. Interestingly, together with recent reports of naive human pluripotent stem cells, our findings suggest several conserved signaling pathways shared with rodents and specific to primates, providing significant insights for acquiring naive pluripotency from other species.
View Article and Find Full Text PDFThe applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines.
View Article and Find Full Text PDF