Historical use of fertilizer and manure on farmlands is known to have a lasting impact on ecosystems and water resources, but few studies assess the legacy of nitrate pollution on groundwater and surface water after farming applications were reduced. We studied the response of nitrate in spring water to a reduction of nitrogen fertilizer applications in agriculture realized since the mid-1980s. We assessed the travel time distribution of groundwater based on a time series of tritium measurements for 90 springs and small brooks that drain a dual porosity chalk aquifer.
View Article and Find Full Text PDFThe solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils.
View Article and Find Full Text PDFThe European Community asks its Member States to provide a comprehensive and coherent overview of their groundwater chemical status. It is stated that simple conceptual models are necessary to allow assessments of the risks of failing to meet quality objectives. In The Netherlands two monitoring networks (one for agriculture and one for nature) are operational, providing results which can be used for an overview.
View Article and Find Full Text PDFThe Dutch National Monitoring Programme for Effectiveness of the Minerals Policy (LMM) was initiated to allow detection of a statutory reduction in nitrate leaching caused by a decreasing N load. The starting point, or baseline, was taken as the nitrate concentration of the upper metre of groundwater sampled on 99 farms in the 1992-1995 period in the sandy areas of the Netherlands, where predominantly grass and maize grow. We found here that a reduction in nitrate leaching of more than 20% in future would almost certainly be detected with the LMM.
View Article and Find Full Text PDFAnthropogenic increase in atmospheric nitrogen (N) deposition in nature areas results in nitrate leaching to groundwater, threatening its quality. Member states of the European Union are obliged to reduce groundwater nitrate concentrations and to monitor this reduction. The relationship between N deposition and groundwater nitrate concentrations is quantified using a field survey and geographical information.
View Article and Find Full Text PDF