Inertial focusing excels at the precise spatial ordering and separation of microparticles by size within fluid flows. However, this advantage, resulting from its inherent size-dependent dispersion, could turn into a drawback that challenges applications requiring consistent and uniform positioning of polydisperse particles, such as microfiltration and flow cytometry. To overcome this fundamental challenge, we introduce Dispersion-Free Inertial Focusing (DIF).
View Article and Find Full Text PDFImage-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation.
View Article and Find Full Text PDFComplex and irregular cell architecture is known to statistically exhibit fractal geometry, i.e., a pattern resembles a smaller part of itself.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2023
Current single-cell visualisation techniques project high dimensional data into 'map' views to identify high-level structures such as cell clusters and trajectories. New tools are needed to allow the transversal through the high dimensionality of single-cell data to explore the single-cell local neighbourhood. StarmapVis is a convenient web application displaying an interactive downstream analysis of single-cell expression or spatial transcriptomic data.
View Article and Find Full Text PDFPropelled by the striking advances in optical microscopy and deep learning (DL), the role of imaging in lab-on-a-chip has dramatically been transformed from a silo inspection tool to a quantitative "smart" engine. A suite of advanced optical microscopes now enables imaging over a range of spatial scales (from molecules to organisms) and temporal window (from microseconds to hours). On the other hand, the staggering diversity of DL algorithms has revolutionized image processing and analysis at the scale and complexity that were once inconceivable.
View Article and Find Full Text PDFThe association of the intrinsic optical and biophysical properties of cells to homeostasis and pathogenesis has long been acknowledged. Defining these label-free cellular features obviates the need for costly and time-consuming labelling protocols that perturb the living cells. However, wide-ranging applicability of such label-free cell-based assays requires sufficient throughput, statistical power and sensitivity that are unattainable with current technologies.
View Article and Find Full Text PDFParallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only two dimensions or sparse sampling in three dimensions. We hereby develop a novel fluorescence imaging approach, called coded light-sheet array microscopy (CLAM), which allows complete parallelized 3D imaging without mechanical scanning.
View Article and Find Full Text PDFMotivation: New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity.
Results: We introduce a highly scalable graph-based clustering algorithm PARC-Phenotyping by Accelerated Refined Community-partitioning-for large-scale, high-dimensional single-cell data (>1 million cells).