Background: Nonsteroidal anti-inflammatory drugs are contraindicated in the third trimester of pregnancy due to negative effects including alteration of uteroplacental blood flow, premature ductus arteriosus closure, and adverse effects on the fetal kidney. However, many women are unaware of these risks, and commonly report their use in pregnancy. We aimed to determine if umbilical cord was a reliable matrix for detecting NSAID use, determine incidence of use close to labour, and uncover associations with obstetric/neonatal outcomes.
View Article and Find Full Text PDFThe umbilical cord (UC) connects the fetal blood supply to the placenta, so is exposed to all systemic endo- and xenobiotics. We have extensive experience using UC as an analytical matrix for detecting and/or quantitating drugs, chemicals and endogenous compounds. This technical note describes advantages (large amount available, ease of collection, small sample needed for use, rapid availability) and challenges (clinical relationships, processing difficulties, matrix effects on analytes and detection technologies) of UC as an analytical matrix in ELISA and LC/MS platforms, and provides guidance for successfully working with this tissue.
View Article and Find Full Text PDFDisposal of mercury waste has always provided unique challenges due to its high degree of complexity and volatility. This study evaluated the feasibility of using waste LF slag to form a cementitious matrix capable of providing an effective stabilization/solidification solution for the treatment of mercury wastes. The new matrix was synthesized and simulated through a combination of alkali activation and autoclaving process and doped with mercury nitrate at increasing dosage while monitoring the final form of the mercury and its effects on the mineral stability and structure of the new matrix.
View Article and Find Full Text PDFThe feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.
View Article and Find Full Text PDF