Publications by authors named "Dick Terwel"

An active role of neuroinflammation and the NLRP3 inflammasome in Alzheimer's disease and related tauopathies is increasingly identified, supporting NLRP3 as an interesting therapeutic target. However, its effect on tau-associated neurodegeneration, a key-process in tauopathies, remains unknown. While tau pathology and neurodegeneration are closely correlated, different tau forms may act as culprits in both characteristics and NLRP3-dependent microglial processes may differently affect both processes, indicating the need to study the role of NLRP3 in both processes concomitantly.

View Article and Find Full Text PDF

Tau is most intensely studied in relation to its executive role in Tauopathies, a family of neurodegenerative disorders characterized by the accumulation of Tau aggregates [15, 21, 38, 75, 89, 111, 121, 135, 175, 176, 192]. Tau aggregation in the different Tauopathies differs in the affected cell type, the structure of aggregates and Tau isoform composition. However, in all Tauopathies, accumulation of pathological Tau in well-characterized and well-defined brain regions, correlates strongly with symptoms associated with the dysfunction of this brain region.

View Article and Find Full Text PDF

Brains of Alzheimer's disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3-ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aβ)-induced microgliosis and Aβ pathology has been unequivocally identified. Aβ aggregates activate NLRP3-ASC inflammasome (Halle et al.

View Article and Find Full Text PDF

One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD.

View Article and Find Full Text PDF

In addition to a prominent role in glycemic control, glucagon-like peptide 1 (GLP-1) receptor agonists exhibit neuroprotective properties. There is mounting experimental evidence that GLP-1 receptor agonists, including liraglutide, may enhance synaptic plasticity, counteract cognitive deficits and ameliorate neurodegenerative features in preclinical models of Alzheimer's disease (AD), predominantly in the context of β-amyloid toxicity. Here we characterized the effects of liraglutide in a transgenic mutant tau (hTauP301L) mouse tauopathy model, which develops age-dependent pathology-specific neuronal tau phosphorylation and neurofibrillary tangle formation with progressively compromised motor function (limb clasping).

View Article and Find Full Text PDF

Prion-like seeding and propagation of Tau-pathology have been demonstrated experimentally and may underlie the stereotyped progression of neurodegenerative Tauopathies. However, the involvement of templated misfolding of Tau in neuronal network dysfunction and behavioral outcomes remains to be explored in detail. Here we analyzed the repercussions of prion-like spreading of Tau-pathology via neuronal connections on neuronal network function in TauP301S transgenic mice.

View Article and Find Full Text PDF

Chemokines are important modulators of neuroinflammation and neurodegeneration. In the brains of Alzheimer's disease (AD) patients and in AD animal models, the chemokine CXCL10 is found in high concentrations, suggesting a pathogenic role for this chemokine and its receptor, CXCR3. Recent studies aimed at addressing the role of CXCR3 in neurological diseases indicate potent, but diverse, functions for CXCR3.

View Article and Find Full Text PDF

The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer's Disease research, although the final and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking.

View Article and Find Full Text PDF

Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer's disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ.

View Article and Find Full Text PDF

To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice.

View Article and Find Full Text PDF

Rationale: Acetylcholinesterase inhibitors (AChEIs) are approved to treat the symptoms of mild to moderate Alzheimer's disease by restoring acetylcholine levels at synapses where the neurotransmitter has been depleted due to neurodegeneration. This assumption is challenged by more recent clinical studies suggesting the potential for disease-modifying effects of AChEIs as well as in vitro studies showing neuroprotective effects. However, few preclinical studies have assessed whether the improvement of cognitive symptoms may be mediated by reductions in Abeta or Tau pathology.

View Article and Find Full Text PDF

Background: Degeneration of the locus coeruleus (LC), the major noradrenergic nucleus in the brain, occurs early and is ubiquitous in Alzheimer's disease (AD). Experimental lesions to the LC exacerbate AD-like neuropathology and cognitive deficits in several transgenic mouse models of AD. Because the LC contains multiple neuromodulators known to affect amyloid β toxicity and cognitive function, the specific role of noradrenaline (NA) in AD is not well understood.

View Article and Find Full Text PDF

Part of the inflammatory response in Alzheimer's disease (AD) is the upregulation of the inducible nitric oxide synthase (NOS2) resulting in increased NO production. NO contributes to cell signaling by inducing posttranslational protein modifications. Under pathological conditions there is a shift from the signal transducing actions to the formation of protein tyrosine nitration by secondary products like peroxynitrite and nitrogen dioxide.

View Article and Find Full Text PDF

Liver X receptors (LXRs) regulate immune cell function and cholesterol metabolism, both factors that are critically involved in Alzheimer's disease (AD). To investigate the therapeutic potential of long-term LXR activation in amyloid-β (Aβ) peptide deposition in an AD model, 13-month-old, amyloid plaque-bearing APP23 mice were treated with the LXR agonist TO901317. Postmortem analysis demonstrated that TO901317 efficiently crossed the blood-brain barrier.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia and associated with progressive deposition of amyloid β-peptides (Aβ) in the brain. Aβ derives by sequential proteolytic processing of the amyloid precursor protein by β- and γ-secretases. Rare mutations that lead to amino-acid substitutions within or close to the Aβ domain promote the formation of neurotoxic Aβ assemblies and can cause early-onset AD.

View Article and Find Full Text PDF

Wilson's disease (WD) is caused by mutations in the copper transporting ATPase 7B (Atp7b). Patients present with liver pathology or behavioural disturbances. Studies on rodent models for WD so far mainly focussed on liver, not brain.

View Article and Find Full Text PDF

Neuronal loss in the locus coeruleus (LC) is 1 of the early pathological events in Alzheimer's disease (AD). Projections of noradrenergic neurons of the LC innervate the olfactory bulb (OB). Because olfactory deficits have been reported in early AD, we investigated the effect of induced LC degeneration on olfactory memory and discrimination in an AD mouse model.

View Article and Find Full Text PDF

Both hypercortisolemia and hippocampal damage are features found in patients diagnosed of Alzheimer's disease (AD) and epidemiological evidence supports a role for stress as a risk factor for AD. It is known that immobilization stress is followed by accumulation of oxidative/nitrosative mediators in brain after the release of proinflammatory cytokines, nuclear factor kappa B activation, nitric oxide synthase-2 and cyclooxygenase-2 expression. Long-term exposure to elevated corticosteroid levels is known to affect the hippocampus which plays a central role in the regulation of the hypothalamic-pituitary-adrenal axis.

View Article and Find Full Text PDF

Unraveling the biochemical and genetic alterations that control the aggregation of protein tau is crucial to understand the etiology of tau-related neurodegenerative disorders. We expressed wild type and six clinical frontotemporal dementia with parkinsonism (FTDP) mutants of human protein tau in wild-type yeast cells and cells lacking Mds1 or Pho85, the respective orthologues of the tau kinases GSK3β and cdk5. We compared tau phosphorylation with the levels of sarkosyl-insoluble tau (SinT), as a measure for tau aggregation.

View Article and Find Full Text PDF

Generation of neurotoxic amyloid beta peptides and their deposition along with neurofibrillary tangle formation represent key pathological hallmarks in Alzheimer's disease (AD). Recent evidence suggests that inflammation may be a third important component which, once initiated in response to neurodegeneration or dysfunction, may actively contribute to disease progression and chronicity. Various neuroinflammatory mediators including complement activators and inhibitors, chemokines, cytokines, radical oxygen species and inflammatory enzyme systems are expressed and released by microglia, astrocytes and neurons in the AD brain.

View Article and Find Full Text PDF

Locus ceruleus (LC)-supplied norepinephrine (NE) suppresses neuroinflammation in the brain. To elucidate the effect of LC degeneration and subsequent NE deficiency on Alzheimer's disease pathology, we evaluated NE effects on microglial key functions. NE stimulation of mouse microglia suppressed Abeta-induced cytokine and chemokine production and increased microglial migration and phagocytosis of Abeta.

View Article and Find Full Text PDF

Degeneration of locus ceruleus neurons and subsequent reduction of norepinephrine concentration in locus ceruleus projection areas represent an early pathological indicator of Alzheimer's disease. In order to model the pathology of the human disease and to study the effects of norepinephrine-depletion on amyloid precursor protein processing, behaviour, and neuroinflammation, locus ceruleus degeneration was induced in mice coexpressing the swedish mutant of the amyloid precursor protein and the presenilin 1 DeltaExon 9 mutant (APP/PS1) using the neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (dsp4) starting treatment at 3 months of age. Norepinephrine transporter immunolabelling demonstrated severe loss of locus ceruleus neurons and loss of cortical norepinephrine transporter starting as early as 4.

View Article and Find Full Text PDF

To date, long-term consequences of septic encephalopathy on cerebral metabolism, cognition, learning, and memory capabilities and factors involved are poorly understood. In this study, we used a murine sepsis model to demonstrate that bacterial lipopolysaccharide (LPS) causes long-term cognitive deficits in mice. Two months after LPS treatment, wild-type mice committed more working and reference memory errors than controls.

View Article and Find Full Text PDF

Glioblastoma represent the most common primary brain tumor in adults and are currently considered incurable. We investigated antiproliferative and anti-invasive mechanisms of 6-OH-11-O-hydroxyfenantrene (IIF), a retinoid X receptor ligand, and pioglitazone (PGZ), a peroxisome proliferator-activated receptor gamma activator, in three different glioblastoma cell lines. A dose-dependent reduction of tumor invasion and strong decrease of matrix metalloproteinases 2 and 9 expression was observed, especially when a combination therapy of IIF and PGZ was administered.

View Article and Find Full Text PDF

The hypothesis that amyloid pathology precedes and induces the tau pathology of Alzheimer's disease is experimentally supported here through the identification of GSK-3 isozymes as a major link in the signaling pathway from amyloid to tau pathology. This study compares two novel bigenic mouse models: APP-V717I x Tau-P301L mice with combined amyloid and tau pathology and GSK-3beta x Tau-P301L mice with tauopathy only. Extensive and remarkable parallels were observed between these strains including 1) aggravation of tauopathy with highly fibrillar tangles in the hippocampus and cortex; 2) prolonged survival correlated to alleviated brainstem tauopathy; 3) development of severe cognitive and behavioral defects in young adults before the onset of amyloid deposition or tauopathy; and 4) presence of pathological phospho-epitopes of tau, including the characteristic GSK-3beta motif at S396/S404.

View Article and Find Full Text PDF