Publications by authors named "Dick B Janssen"

The P450 monooxygenase CYP109A2 from Bacillus megaterium DSM319 was previously found to convert vitamin D3 (VD3) to 25-hydroxyvitamin D3. Here, we show that this enzyme is also able to convert testosterone in a highly regio- and stereoselective manner to 16β-hydroxytestosterone. To reveal the structural determinants governing the regio- and stereoselective steroid hydroxylation reactions catalyzed by CYP109A2, two crystal structures of CYP109A2 were solved in similar closed conformations, one revealing a bound testosterone in the active site pocket, albeit at a nonproductive site away from the heme-iron.

View Article and Find Full Text PDF

Whereas directed evolution and rational design by structural inspection are established tools for enzyme redesign, computational methods are less mature but have the potential to predict small sets of mutants with desired properties without laboratory screening of large libraries. We have explored the use of computational enzyme redesign to change the enantioselectivity of a highly thermostable alcohol dehydrogenase from Thermus thermophilus in the asymmetric reduction of ketones. The enzyme reduces acetophenone to (S)-1-phenylethanol.

View Article and Find Full Text PDF

CYP105AS1 is a cytochrome P450 from that catalyzes monooxygenation of compactin to 6-epi-pravastatin. For fermentative production of the cholesterol-lowering drug pravastatin, the stereoselectivity of the enzyme needs to be inverted, which has been partially achieved by error-prone PCR mutagenesis and screening. In the current study, we report further optimization of the stereoselectivity by a computationally aided approach.

View Article and Find Full Text PDF

ω-Transaminases (ω-TAs) catalyze the conversion of ketones to chiral amines, often with high enantioselectivity and specificity, which makes them attractive for industrial production of chiral amines. Tailoring ω-TAs to accept non-natural substrates is necessary because of their limited substrate range. We present a computational protocol for predicting the enantioselectivity and catalytic selectivity of an ω-TA from with different substrates and benchmark it against 62 compounds gathered from the literature.

View Article and Find Full Text PDF

ω-Transaminases (ω-TA) are attractive biocatalysts for the production of chiral amines from prochiral ketones asymmetric synthesis. However, the substrate scope of ω-TAs is usually limited due to steric hindrance at the active site pockets. We explored a protein engineering strategy using computational design to expand the substrate scope of an ()-selective ω-TA from (TA-R6) toward the production of bulky amines.

View Article and Find Full Text PDF

Diaminopimelate decarboxylases (DAPDCs) are highly selective enzymes that catalyze the common final step in different lysine biosynthetic pathways, i.e. the conversion of meso-diaminopimelate (DAP) to L-lysine.

View Article and Find Full Text PDF

Caprolactamase is the first enzyme in the caprolactam degradation pathway of Pseudomonas jessenii. It is composed of two subunits (CapA and CapB) and sequence-related to other ATP-dependent enzymes involved in lactam hydrolysis, like 5-oxoprolinases and hydantoinases. Low sequence similarity also exists with ATP-dependent acetone- and acetophenone carboxylases.

View Article and Find Full Text PDF

Omniligase-1 is a broadly applicable enzyme for peptide bond formation between an activated acyl donor peptide and a non-protected acyl acceptor peptide. The enzyme is derived from an earlier subtilisin variant called peptiligase by several rounds of protein engineering aimed at increasing synthetic yields and substrate range. To examine the contribution of individual mutations on S/H ratio and substrate scope in peptide synthesis, we selected peptiligase variant M222P/L217H as a starting enzyme and introduced successive mutations.

View Article and Find Full Text PDF

CYP154C5 from Nocardia farcinica is a P450 monooxygenase able to hydroxylate a range of steroids with high regio- and stereoselectivity at the 16α-position. Using protein engineering and substrate modifications based on the crystal structure of CYP154C5, an altered regioselectivity of the enzyme in steroid hydroxylation had been achieved. Thus, conversion of progesterone by mutant CYP154C5 F92A resulted in formation of the corresponding 21-hydroxylated product 11-deoxycorticosterone in addition to 16α-hydroxylation.

View Article and Find Full Text PDF

α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation.

View Article and Find Full Text PDF

The mycobacterial PQS dioxygenase AqdC, a cofactor-less protein with an α/β-hydrolase fold, inactivates the virulence-associated quorum-sensing signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) produced by the opportunistic pathogen Pseudomonas aeruginosa and is therefore a potential anti-virulence tool. We have used computational library design to predict stabilizing amino acid replacements in AqdC. While 57 out of 91 tested single substitutions throughout the protein led to stabilization, as judged by increases in of >2 °C, they all impaired catalytic activity.

View Article and Find Full Text PDF

Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from .

View Article and Find Full Text PDF

Biodegradation is the main process for the removal of organic compounds from the environment, but proceeds slowly for many synthetic chemicals of environmental concern. Research on microbial biodegradation pathways revealed that recalcitrance is - among other factors - caused by biochemical blockages resulting in dysfunctional catabolic routes. This has raised interest in the possibility to construct microorganisms with improved catabolic activities by genetic engineering.

View Article and Find Full Text PDF

The use of enzymes in preparative biocatalysis often requires tailoring enzyme selectivity by protein engineering. Herein we explore the use of computational library design and molecular dynamics simulations to create variants of limonene epoxide hydrolase that produce enantiomeric diols from meso-epoxides. Three substrates of different sizes were targeted: cis-2,3-butene oxide, cyclopentene oxide, and cis-stilbene oxide.

View Article and Find Full Text PDF

Background: Efficient bioethanol production from hemicellulose feedstocks by requires xylose utilization. Whereas does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase from (PirXI) is used but the in vivo activity is rather low and very high levels of the enzyme are needed for xylose metabolism.

View Article and Find Full Text PDF

The biodegradation of the nylon-6 precursor caprolactam by a strain of Pseudomonas jessenii proceeds via ATP-dependent hydrolytic ring opening to 6-aminohexanoate. This non-natural ω-amino acid is converted to 6-oxohexanoic acid by an aminotransferase (PjAT) belonging to the fold type I pyridoxal 5'-phosphate (PLP) enzymes. To understand the structural basis of 6-aminohexanoatate conversion, we solved different crystal structures and determined the substrate scope with a range of aliphatic and aromatic amines.

View Article and Find Full Text PDF

Disulfide-rich macrocyclic peptides-cyclotides, for example-represent a promising class of molecules with potential therapeutic use. Despite their potential their efficient synthesis at large scale still represents a major challenge. Here we report new chemoenzymatic strategies using peptide ligase variants-inter alia, omniligase-1-for the efficient and scalable one-pot cyclization and folding of the native cyclotides MCoTI-II, kalata B1 and variants thereof, as well as of the θ-defensin RTD-1.

View Article and Find Full Text PDF

Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth.

View Article and Find Full Text PDF

Biocatalytic dealkylation of aryl methyl ethers is an attractive reaction for valorization of lignin components, as well as for deprotection of hydroxy functionalities in synthetic chemistry. We explored the demethylation of various aryl methyl ethers by using an oxidative demethylase from Pseudomonas sp. HR199.

View Article and Find Full Text PDF

Some bacterial cultures are capable of growth on caprolactam as sole carbon and nitrogen source, but the enzymes of the catabolic pathway have not been described. We isolated a caprolactam-degrading strain of Pseudomonas jessenii from soil and identified proteins and genes putatively involved in caprolactam metabolism using quantitative mass spectrometry-based proteomics. This led to the discovery of a caprolactamase and an aminotransferase that are involved in the initial steps of caprolactam conversion.

View Article and Find Full Text PDF

Introduction of innovative biocatalytic processes offers great promise for applications in green chemistry. However, owing to limited catalytic performance, the enzymes harvested from nature's biodiversity often need to be improved for their desired functions by time-consuming iterative rounds of laboratory evolution. Here we describe the use of structure-based computational enzyme design to convert Bacillus sp.

View Article and Find Full Text PDF

The synthesis of thymosin-α, an acetylated 28 amino acid long therapeutic peptide, via conventional chemical methods is exceptionally challenging. The enzymatic coupling of unprotected peptide segments in water offers great potential for a more efficient synthesis of peptides that are difficult to synthesize. Based on the design of a highly engineered peptide ligase, we developed a fully convergent chemo-enzymatic peptide synthesis (CEPS) process for the production of thymosin-αvia a 14-mer + 14-mer segment condensation strategy.

View Article and Find Full Text PDF

The conversion of a series of pharmaceutical compounds was examined with three variants of cytochrome P450BM3 fused to phosphite dehydrogenase (PTDH) to enable cofactor recycling. Conditions for enzyme production were optimized, and the purified PTDH-P450BM3 variants were tested against 32 commercial drugs by using rapid UPLC-MS analysis. The sets of mutations (R47L/F87V/L188Q and R47L/F87V/L188Q/E267V/G415S) improved conversion for all compounds, and a variety of products were detected.

View Article and Find Full Text PDF

The ability to stabilize enzymes and other proteins has wide-ranging applications. Most protocols for enhancing enzyme stability require multiple rounds of high-throughput screening of mutant libraries and provide only modest improvements of stability. Here, we describe a computational library design protocol that can increase enzyme stability by 20-35 °C with little experimental screening, typically fewer than 200 variants.

View Article and Find Full Text PDF

Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondoni5524um50dmvs1qnbhf83spc4pli4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once