Publications by authors named "Dichtel W"

Thermoset polyurethanes (PUs) have been successfully reprocessed as covalent adaptable networks (CANs) by catalyzing carbamate exchange. Here we extend bond exchange beyond the internal network cross-links to create a dynamic urethane adhesive. Interfacing PU CANs to substrates with nucleophilic functional groups creates adhesives capable of reversible transcarbamoylation with the substrate, which has not been demonstrated previously by CAN adhesives.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular electron spin qubits can be organized in precise arrays, showing promise in quantum information science.
  • Researchers created a new material called paired-ion frameworks (PIFs) using vanadyl porphyrin molecular qubits, which were studied using electron paramagnetic resonance spectroscopy.
  • The spin coherence time of these qubits was measured at different temperatures, with improved coherence times observed in specific conditions due to reduced interaction effects, highlighting the potential of PIFs for developing advanced quantum materials.
View Article and Find Full Text PDF

Perfluoroalkyl acids (PFAAs) are ubiquitous environmental contaminants of global concern, and adsorption processes are the most widely used technologies to remove PFAAs from water. However, there remains little data on the ways that specific water matrix constituents inhibit the adsorption of PFAAs on different adsorbents. In this study, we evaluated the adsorption of 13 PFAAs on two styrene-functionalized β-cyclodextrin (StyDex) polymers, an activated carbon (AC), and an anion-exchange resin (AER) in the absence and presence of specific water matrix constituents (16 unique water matrices) in batch experiments.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants linked to harmful health effects. Currently employed PFAS destruction methods are energy-intensive and often produce shorter-chain and recalcitrant partially fluorinated byproducts. We report the mineralization of five fluorotelomer compounds via a base-mediated degradation using NaOH and mild temperatures (120 °C) in a mixture of DMSO:HO (8:1 v/v).

View Article and Find Full Text PDF

Controlling the two-dimensional polymerization processes of two-dimensional covalent organic frameworks (2D COFs) is essential to fully realizing their distinct properties. Although most 2D COFs have been isolated as polycrystalline aggregates with only nanometer-scale crystalline domains, we have identified rapid, solvothermal conditions that provide micrometer-scale and larger single-crystal 2D polymers for a few 2D COFs. Yet it remains unclear why certain conditions produce far larger 2D polymers than others, which hinders generalizing these findings.

View Article and Find Full Text PDF

The synthesis and scale-up of high quality covalent organic frameworks (COFs) remains a challenge due to slow kinetics of the reversible bond formation and the need for precise control of reaction conditions. Here we report the rapid synthesis of faceted single crystals of two-dimensional (2D) COFs using a continuous flow reaction process. Two imine linked materials were polymerized to the hexagonal CF-TAPB-DMPDA and the rhombic CF-TAPPy-PDA COF, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - Cross-linked β-cyclodextrin (β-CD) polymers serve as effective adsorbents for removing harmful per- and polyfluoroalkyl substances (PFAS) from water sources, showcasing their potential in treating contaminated environments.
  • - The study evaluates 20 different StyDex polymer variations with different comonomer structures and configurations, identifying one with dimethylbutyl ammonium ions as the best performer for PFAS adsorption in batch tests.
  • - The research highlights that the arrangement of styrene groups on β-CD monomers did not significantly affect performance, suggesting a simpler preparation method that maintains effectiveness, paving the way for cost-efficient adsorbent development.
View Article and Find Full Text PDF

Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents.

View Article and Find Full Text PDF

Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction.

View Article and Find Full Text PDF

Molecular electronic spin qubits have great potential for use in quantum information science applications because their structure can be rationally tuned using synthetic chemistry. Their integration into a new class of materials, ion-paired frameworks, allows for the formation of ordered arrays of these molecular spin qubits. Three ion-paired frameworks with varying densities of paramagnetic Cu(II) porphyrins were isolated as micron-sized crystals suitable for characterization by single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Thermoset polyurethane (PU) foams are widely used in industrial applications, but they cannot be recycled by conventional melt reprocessing because of their cross-linked structures. The introduction of carbamate exchange catalysts converts thermoset PU into covalent adaptable networks (CANs), which are amenable to reprocessing at elevated temperatures. However, this approach has produced solid PU films, which have fewer uses and lower commercial demand.

View Article and Find Full Text PDF

With molecularly well-defined and tailorable 2D structures, covalent organic frameworks (COFs) have emerged as leading material candidates for chemical sensing, storage, separation, and catalysis. In these contexts, the ability to directly and deterministically print COFs into arbitrary geometries will enable rapid optimization and deployment. However, previous attempts to print COFs have been restricted by low spatial resolution and/or post-deposition polymerization that limits the range of compatible COFs.

View Article and Find Full Text PDF

Two-dimensional covalent organic frameworks (2D COFs) containing heterotriangulenes have been theoretically identified as semiconductors with tunable, Dirac-cone-like band structures, which are expected to afford high charge-carrier mobilities ideal for next-generation flexible electronics. However, few bulk syntheses of these materials have been reported, and existing synthetic methods provide limited control of network purity and morphology. Here, we report transimination reactions between benzophenone-imine-protected azatriangulenes (OTPA) and benzodithiophene dialdehydes (BDT), which afforded a new semiconducting COF network, OTPA-BDT.

View Article and Find Full Text PDF

Interrogating the stacking of two-dimensional polymers (2DPs) as a function of chemical composition is important to leverage their properties. We explore the dependence of 2DP crystallinity and porosity on variable amounts of zwitterions contained within the pores and find that high zwitterion loadings consistently diminish 2DP materials quality. A competition between disruptive zwitterion electrostatic forces and alkyl stabilization directs the stacking order of each 2DP and demonstrates the contrasting effects of side chain composition on 2DP crystallinity and porosity.

View Article and Find Full Text PDF

2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature.

View Article and Find Full Text PDF
Article Synopsis
  • Methylammonium lead iodide (MAPbI) perovskite nanocrystals exhibit excellent optoelectronic features, making them suitable for use in devices like solar cells, lasers, and LEDs.
  • Through advanced techniques like variable temperature X-ray diffraction and synchrotron-based transient X-ray diffraction, it was discovered that these nanocrystals experience a phase transition from tetragonal to pseudocubic when exposed to light, occurring over 1 nanosecond.
  • The study highlights that lattice recovery occurs more rapidly than anticipated under certain conditions, suggesting the material can maintain a state of meta-stability due to structural changes, which is important for enhancing device performance.
View Article and Find Full Text PDF

Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by -doping naphthalene diimide subunits with varying amounts of CoCp and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy.

View Article and Find Full Text PDF

The synthesis of a diol containing a nonalternant aromatic core was investigated to access a nonalternant isomer of bisanthene with functional groups suitable for two-dimensional polymerization. An alternant diol and its nonalternant isomer were prepared in a short synthetic route from the same bifluorenylidene starting material. The bifluorenylidene reactant undergoes a Stone-Wales rearrangement in neat triflic acid, which unexpectedly provided both an alternant and nonalternant dione.

View Article and Find Full Text PDF

Two-dimensional (2D) covalent organic frameworks (COFs) are composed of structurally precise, permanently porous, layered macromolecular sheets, which are traditionally synthesized as polycrystalline solids with crystalline domain lengths smaller than 100 nm. Here, we polymerize imine-linked 2D COFs as suspensions of faceted single crystals in as little as 5 min at moderate temperature and ambient pressure. Single crystals of two imine-linked 2D COFs were prepared, consisting of a rhombic 2D COF () and a hexagonal 2D COF ().

View Article and Find Full Text PDF

Polymer membranes are widely used in separation processes including desalination, organic solvent nanofiltration and crude oil fractionation. Nevertheless, direct evidence of subnanometre pores and a feasible method of manipulating their size is still challenging because of the molecular fluctuations of poorly defined voids in polymers. Macrocycles with intrinsic cavities could potentially tackle this challenge.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative pollutants found in water resources at concentrations harmful to human health. Whereas current PFAS destruction strategies use nonselective destruction mechanisms, we found that perfluoroalkyl carboxylic acids (PFCAs) could be mineralized through a sodium hydroxide-mediated defluorination pathway. PFCA decarboxylation in polar aprotic solvents produced reactive perfluoroalkyl ion intermediates that degraded to fluoride ions (78 to ~100%) within 24 hours.

View Article and Find Full Text PDF

Cross-linked polymers containing β-cyclodextrin (β-CD) are promising adsorbents with demonstrated removal performances for per- and polyfluoroalkyl substances (PFASs) from contaminated water sources. Despite the promising performance of some β-CD-based adsorbents for PFAS removal, many of these materials are not amenable for rational performance improvement or addressing fundamental questions about the PFAS adsorption mechanisms. These ambiguities arise from the poorly defined structure of the cross-linked polymers, especially with respect to the random substitution patterns of the cyclodextrins as well as side reactions that modify the structures of some cross-linkers.

View Article and Find Full Text PDF

Organic electrochemical transistors (OECTs) are devices with broad potential in bioelectronic sensing, circuits, and neuromorphic hardware. Their unique properties arise from the use of organic mixed ionic/electronic conductors (OMIECs) as the active channel. Typical OMIECs are linear polymers, where defined and controlled microstructure/morphology, and reliable characterization of transport and charging can be elusive.

View Article and Find Full Text PDF

Supramolecular nanotubes prepared through macrocycle assembly offer unique properties that stem from their long-range order, structural predictability, and tunable microenvironments. However, assemblies that rely on weak non-covalent interactions often have limited aspect ratios and poor mechanical integrity, which diminish their utility. Here pentagonal imine-linked macrocycles are prepared by condensing a pyridine-containing diamine and either terephthalaldehyde or 2,3,5,6-tetrafluoroterephthalaldehyde.

View Article and Find Full Text PDF

To improve their synthesis and ultimately realize the technical promise of two-dimensional covalent organic frameworks (2D COFs), it is imperative that a robust understanding of their structure be developed. However, high-resolution transmission electron microscopy (HR-TEM) imaging of such beam-sensitive materials is an outstanding characterization challenge. Here, we overcome this challenge by leveraging low electron flux imaging conditions and high-speed direct electron counting detectors to acquire high-resolution images of 2D COF films.

View Article and Find Full Text PDF