Background: Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence.
View Article and Find Full Text PDFMyelomonocytic and monocytic acute myeloid leukemia (AML) subtypes are intrinsically resistant to venetoclax-based regimens. Identifying targetable vulnerabilities would limit resistance and relapse. We previously documented the synergism of venetoclax and cardiac glycoside (CG) combination in AML.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers.
View Article and Find Full Text PDFPalytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity.
View Article and Find Full Text PDFis used in Burkina Faso folk medicine for the treatment of inflammation and cancer. The purpose of this study was to evaluate the antioxidant and cytotoxic effects of this plant. The cytotoxic effects of root (dichloromethane and methanol ) and stem (dichloromethane and methanol ) bark extracts of were assessed on chronic K562 and acute U937 myeloid leukemia cancer cells using trypan blue, Hoechst, and MitoTracker Red staining methods.
View Article and Find Full Text PDFAplysinopsins are a class of marine indole alkaloids that exhibit a wide range of biological activities. Although both the indole and N-benzyl moieties of aplysinopsins are known to possess antiproliferative activity against cancer cells, their mechanism of action remains unclear. Through in vitro and in vivo proliferation and viability screening of newly synthesized aplysinopsin analogs on myelogenous leukemia cell lines and zebrafish toxicity tests, as well as analysis of differential toxicity in noncancerous RPMI 1788 cells and PBMCs, we identified EE-84 as a promising novel drug candidate against chronic myeloid leukemia.
View Article and Find Full Text PDFCellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels.
View Article and Find Full Text PDFMultiple myeloma (MM) is a biologically complex hematological disorder defined by the clonal proliferation of malignant plasma cells producing excessive monoclonal immunoglobulin that interacts with components of the bone marrow microenvironment, resulting in the major clinical features of MM. Despite the development of numerous protocols to treat MM patients, this cancer remains currently incurable; due in part to the emergence of resistant clones, highlighting the unmet need for innovative therapeutic approaches. Accumulating evidence suggests that the survival of MM molecular subgroups depends on the expression profiles of specific subsets of anti-apoptotic B-cell lymphoma (BCL)-2 family members.
View Article and Find Full Text PDFB cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics are targeted therapeutic agents that allow response prediction and patient stratification. BH3 mimetics are prototypical activators of the mitochondrial death program in cancer. They emerged as important modulators of cellular mechanisms contributing to poor therapeutic responses, including cancer cell stemness, cancer-specific metabolic routes, paracrine signaling to the tumor microenvironment, and immune modulation.
View Article and Find Full Text PDFDespite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL) cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs develop resistance and severe adverse effects. Combination treatment, especially with a histone deacetylase (HDAC) 6 inhibitor (HDAC6i), appears to be an attractive option to prevent TKI resistance, considering the potential capacity of an HDAC6i to diminish BCR-ABL expression. We first validated the in vivo anti-cancer potential of the compound 7b by significantly reducing the tumor burden of BALB/c mice xenografted with K-562 cells, without notable organ toxicity.
View Article and Find Full Text PDFBackground: Chronic myeloid leukemia (CML) pathogenesis is mainly driven by the oncogenic breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) fusion protein. Since BCR-ABL displays abnormal constitutive tyrosine kinase activity, therapies using tyrosine kinase inhibitors (TKis) such as imatinib represent a major breakthrough for the outcome of CML patients. Nevertheless, the development of TKi resistance and the persistence of leukemia stem cells (LSCs) remain barriers to cure the disease, justifying the development of novel therapeutic approaches.
View Article and Find Full Text PDFThe recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system.
View Article and Find Full Text PDFImatinib became the standard treatment for chronic myeloid leukemia (CML) about 20 years ago, which was a major breakthrough in stabilizing the pathology and improving the quality of life of patients. However, the emergence of resistance to imatinib and other tyrosine kinase inhibitors leads researchers to characterize new therapeutic targets. Several studies have highlighted the role of histone deacetylase 6 (HDAC6) in various pathologies, including cancer.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is a hematological disorder caused by the oncogenic BCR-ABL fusion protein in more than 90% of patients. Despite the striking improvements in the management of CML patients since the introduction of tyrosine kinase inhibitors (TKis), the appearance of TKi resistance and side effects lead to treatment failure, justifying the need of novel therapeutic approaches. Histone deacetylase inhibitors (HDACis), able to modulate gene expression patterns and important cellular signaling pathways through the regulation of the acetylation status of both histone and non-histone protein targets, have been reported to display promising anti-leukemic properties alone or in combination with TKis.
View Article and Find Full Text PDFRedox changes and generation of reactive oxygen species (ROS) are part of normal cell metabolism. While low ROS levels are implicated in cellular signaling pathways necessary for survival, higher levels play major roles in cancer development as well as cell death signaling and execution. A role for redox changes in apoptosis has been long established; however, several new modalities of regulated cell death have been brought to light, for which the importance of ROS production as well as ROS source and targets are being actively investigated.
View Article and Find Full Text PDFNatural compounds act as immunoadjuvants as their therapeutic effects trigger cancer stress response and release of damage-associated molecular patterns (DAMPs). These reactions occur through an increase in the immunogenicity of cancer cells that undergo stress followed by immunogenic cell death (ICD). These processes result in a chemotherapeutic response with a potent immune-mediating reaction.
View Article and Find Full Text PDFTreatment of acute myeloid leukemia (AML) patients is still hindered by resistance and relapse, resulting in an overall poor survival rate. Recently, combining specific B-cell lymphoma (Bcl)-2 inhibitors with compounds downregulating myeloid cell leukemia (Mcl)-1 has been proposed as a new effective strategy to eradicate resistant AML cells. We show here that 1(), 6(), 1'(), 6'(), 11(), 17()-fistularin-3, a bromotyrosine compound of the fistularin family, isolated from the marine sponge , synergizes with Bcl-2 inhibitor ABT-199 to efficiently kill Mcl-1/Bcl-2-positive AML cell lines, associated with Mcl-1 downregulation and endoplasmic reticulum stress induction.
View Article and Find Full Text PDFElevated levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNFα) inhibit erythropoiesis and cause anemia in patients with cancer and chronic inflammatory diseases. TNFα is also a potent activator of the sphingomyelinase (SMase)/ceramide pathway leading to ceramide synthesis and regulating cell differentiation, proliferation, apoptosis, senescence, and autophagy. Here we evaluated the implication of the TNFα/SMase/ceramide pathway on inhibition of erythropoiesis in human CD34 hematopoietic stem/progenitor cells (CD34/HSPCs) from healthy donors.
View Article and Find Full Text PDFWe synthetized and investigated the anti-leukemic potential of the novel cytostatic bis(4-hydroxycoumarin) derivative OT-55 which complied with the Lipinski's rule of 5 and induced differential toxicity in various chronic myeloid leukemia (CML) cell models. OT-55 triggered ER stress leading to canonical, caspase-dependent apoptosis and release of danger associated molecular patterns. Consequently, OT-55 promoted phagocytosis of OT-55-treated CML cells by both murine and human monocyte-derived macrophages.
View Article and Find Full Text PDFAutophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers.
View Article and Find Full Text PDF